MHB Is the Norm of a Quantum State Constant in Schrödinger's Equation?

Click For Summary
The discussion focuses on the constancy of the norm of a quantum state represented by $$\phi$$ in Schrödinger's equation. It asserts that if $$\phi$$ satisfies the equation, its norm remains constant over time. The conversation also addresses a specific case where a quantum particle's state $$\phi_{t}$$ is defined on the interval [-a,a] with a zero potential, leading to a query about the differential equation governing $$\phi_{t}$$ in terms of partial derivatives. A clarification is sought regarding the notation used for $$\phi_{t}$$, questioning whether it represents the partial derivative of $$\phi$$ with respect to time. The discussion emphasizes the mathematical relationships in quantum mechanics and the implications for state evolution.
Fermat1
Messages
180
Reaction score
0
A tester of basic quantum mechanics:

1) Let the state of a quantum particle be represented by $$\phi$$. Show that if $$\phi$$ satisfies Schrodinger's equation, then its norm is constant.

2) Now consider a quantum particle with state $$\phi_{t}$$ defined on [-a,a] subject to potential V=0.

State the differential equation that $$\phi_{t}$$ solves in terms of partial derivatives of x and t.
 
Mathematics news on Phys.org
Partial solution to #1:

We assume $\phi$ satisfies the Schrodinger equation
$$i \hbar \phi_{t}=(- ( \hbar^{2}/2m) \nabla^{2}+V)\phi. \qquad (1)$$
Since $|\phi|^{2}= \phi^{*} \phi$, we seek to show that
$$ \frac{ \partial}{ \partial t}( \phi^{*} \phi)=0.$$
This is tantamount to showing that
$$ \phi \frac{ \partial \phi^{*}}{ \partial t}+ \phi^{*} \frac{ \partial \phi}{ \partial t}=0.$$
Take the complex conjugation of the Schrodinger equation thus:
$$-i \hbar \phi^{*}_{t}=(- ( \hbar^{2}/2m) \nabla^{2}+V)\phi^{*}. \qquad (2)$$
We have assumed that $V$ is real. Multiply $(1)$ by $\phi^{*}$ and $(2)$ by $-\phi$ to obtain:
\begin{align*}
i \hbar \phi^{*} \phi_{t}&=(- ( \hbar^{2}/2m) \phi^{*} \nabla^{2}+ \phi^{*}V)\phi \\
i \hbar \phi \phi^{*}_{t}&=(( \hbar^{2}/2m) \phi \nabla^{2}- \phi V)\phi^{*}.
\end{align*}
Adding these equations together yields
$$i \hbar (\phi^{*} \phi_{t}+ \phi \phi^{*}_{t})=-( \hbar^{2}/2m) \phi^{*} \nabla^{2} \phi+( \hbar^{2}/2m) \phi \nabla^{2} \phi^{*}
= \frac{ \hbar^{2}}{2m}\left( \phi \nabla^{2} \phi^{*} - \phi^{*} \nabla^{2} \phi \right).$$
We have now reduced the problem down to showing that
$$\phi \nabla^{2} \phi^{*} - \phi^{*} \nabla^{2} \phi=0.$$
Let us examine one of these. I claim that $\phi \nabla^{2} \phi^{*}=- \nabla \phi \cdot \nabla \phi^{*}$; moreover, an analogous line of reasoning will show that $ \phi^{*} \nabla^{2} \phi=- \nabla \phi^{*} \cdot \nabla \phi$. Consider the integral
$$\iiint_{U} \phi^{*} \nabla^{2} \phi \, dV.$$ By Green's First Identity, we know that
$$\iiint_{U} \phi^{*} \nabla^{2} \phi \, dV=- \iiint_{U} \nabla \phi^{*} \cdot \nabla \phi \, dV+ \iint_{ \partial U} \phi^{*}( \nabla \phi \cdot \mathbf{n}) \, dS.$$
This holds for all regions $U$. What I want to say now is that the surface integral has to be zero. However, I'm not sure I can conclude that.

I am at home now; I can post more when I get back to school on Monday.
 
Question on part 2: are you using the notation
$$\phi_{t}= \frac{ \partial \phi}{ \partial t}?$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 3 ·
Replies
3
Views
436
  • · Replies 39 ·
2
Replies
39
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 42 ·
2
Replies
42
Views
8K
  • · Replies 27 ·
Replies
27
Views
3K