MHB Is the Norm of a Quantum State Constant in Schrödinger's Equation?

AI Thread Summary
The discussion focuses on the constancy of the norm of a quantum state represented by $$\phi$$ in Schrödinger's equation. It asserts that if $$\phi$$ satisfies the equation, its norm remains constant over time. The conversation also addresses a specific case where a quantum particle's state $$\phi_{t}$$ is defined on the interval [-a,a] with a zero potential, leading to a query about the differential equation governing $$\phi_{t}$$ in terms of partial derivatives. A clarification is sought regarding the notation used for $$\phi_{t}$$, questioning whether it represents the partial derivative of $$\phi$$ with respect to time. The discussion emphasizes the mathematical relationships in quantum mechanics and the implications for state evolution.
Fermat1
Messages
180
Reaction score
0
A tester of basic quantum mechanics:

1) Let the state of a quantum particle be represented by $$\phi$$. Show that if $$\phi$$ satisfies Schrodinger's equation, then its norm is constant.

2) Now consider a quantum particle with state $$\phi_{t}$$ defined on [-a,a] subject to potential V=0.

State the differential equation that $$\phi_{t}$$ solves in terms of partial derivatives of x and t.
 
Mathematics news on Phys.org
Partial solution to #1:

We assume $\phi$ satisfies the Schrodinger equation
$$i \hbar \phi_{t}=(- ( \hbar^{2}/2m) \nabla^{2}+V)\phi. \qquad (1)$$
Since $|\phi|^{2}= \phi^{*} \phi$, we seek to show that
$$ \frac{ \partial}{ \partial t}( \phi^{*} \phi)=0.$$
This is tantamount to showing that
$$ \phi \frac{ \partial \phi^{*}}{ \partial t}+ \phi^{*} \frac{ \partial \phi}{ \partial t}=0.$$
Take the complex conjugation of the Schrodinger equation thus:
$$-i \hbar \phi^{*}_{t}=(- ( \hbar^{2}/2m) \nabla^{2}+V)\phi^{*}. \qquad (2)$$
We have assumed that $V$ is real. Multiply $(1)$ by $\phi^{*}$ and $(2)$ by $-\phi$ to obtain:
\begin{align*}
i \hbar \phi^{*} \phi_{t}&=(- ( \hbar^{2}/2m) \phi^{*} \nabla^{2}+ \phi^{*}V)\phi \\
i \hbar \phi \phi^{*}_{t}&=(( \hbar^{2}/2m) \phi \nabla^{2}- \phi V)\phi^{*}.
\end{align*}
Adding these equations together yields
$$i \hbar (\phi^{*} \phi_{t}+ \phi \phi^{*}_{t})=-( \hbar^{2}/2m) \phi^{*} \nabla^{2} \phi+( \hbar^{2}/2m) \phi \nabla^{2} \phi^{*}
= \frac{ \hbar^{2}}{2m}\left( \phi \nabla^{2} \phi^{*} - \phi^{*} \nabla^{2} \phi \right).$$
We have now reduced the problem down to showing that
$$\phi \nabla^{2} \phi^{*} - \phi^{*} \nabla^{2} \phi=0.$$
Let us examine one of these. I claim that $\phi \nabla^{2} \phi^{*}=- \nabla \phi \cdot \nabla \phi^{*}$; moreover, an analogous line of reasoning will show that $ \phi^{*} \nabla^{2} \phi=- \nabla \phi^{*} \cdot \nabla \phi$. Consider the integral
$$\iiint_{U} \phi^{*} \nabla^{2} \phi \, dV.$$ By Green's First Identity, we know that
$$\iiint_{U} \phi^{*} \nabla^{2} \phi \, dV=- \iiint_{U} \nabla \phi^{*} \cdot \nabla \phi \, dV+ \iint_{ \partial U} \phi^{*}( \nabla \phi \cdot \mathbf{n}) \, dS.$$
This holds for all regions $U$. What I want to say now is that the surface integral has to be zero. However, I'm not sure I can conclude that.

I am at home now; I can post more when I get back to school on Monday.
 
Question on part 2: are you using the notation
$$\phi_{t}= \frac{ \partial \phi}{ \partial t}?$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top