stauros said:
Sorry ,i cannot follow.
Can you write your proof in a stepwise manner in more details ,like i did mine?
So i will not have to ask questions for each line of the proof.
Thanks
I think it is better to make a partial truth table, for all combinations of truth values of the atomic formulae that can occur together. A full truth table has ##2^5=32## rows, but it turns out that we need only check 3 of them, for the other 29 combinations of truth values can never occur together in this case.
The only three combinations that can occur together are:
1)
a) ##|x|=x## true
b) ##x\ge 0## true
c) ##x=x## true
d) ##x<0## false
e) ##x=-x## true
(this holds if and only if ##x=0##, the only case where ##x=-x## is true)
2)
a) ##|x|=x## true
b) ##x\ge 0## true
c) ##x=x## true
d) ##x<0## false
e) ##x=-x## false
(this holds if and only if ##x>0##)
3)
a) ##|x|=x## false
b) ##x\ge 0## false
c) ##x=x## true
d) ##x<0## true
e) ##x=-x## false
(this holds if and only if ##x<0##)
You should convince yourself that these are the only combinations of truth values of these five atomic formulae that can occur.
Now, if we use the truth tables for implication, conjunction, and equivalence, we see that:
Case 1) and 2):
i) ##|x|=x## true (1 a or 2 a)
ii) ##x\ge 0\Longrightarrow x=x## true (from 1 b and c, or 2 b and c)
iii) ##x<0\Longrightarrow x=-x## true (from 1 d and e, or 2 d and e)
iv) ##(x\ge 0\Longrightarrow x=x)\wedge (x<0\Longrightarrow x=-x)## true (from ii and iii)
v) ##|x|=x\Longleftrightarrow(x\geq 0\Longrightarrow x=x)\wedge(x<0\Longrightarrow x=-x)## true (from i and iv)
Case 3):
i) ##|x|=x## false (3 a)
ii) ##x\ge 0\Longrightarrow x=x## true (from 3 b and c)
iii) ##x<0\Longrightarrow x=-x## false (from 3 d and e)
iv) ##(x\ge 0\Longrightarrow x=x)\wedge (x<0\Longrightarrow x=-x)## false (from ii and iii)
v) ##|x|=x\Longleftrightarrow(x\geq 0\Longrightarrow x=x)\wedge(x<0\Longrightarrow x=-x)## true (from i and iv)
Thus, in all cases which can occur: ##| x|=x\Longleftrightarrow(x\geq 0\Longrightarrow x=x)\wedge(x<0\Longrightarrow x=-x)## is true, so this formula is true for all ##x##.
In other words:
##\forall x[|x|=x\Longleftrightarrow(x\geq 0\Longrightarrow x=x)\wedge(x<0\Longrightarrow x=-x)]##
is true.