Is there a better way to present proofs by contradiction?

Dr. Seafood
Messages
120
Reaction score
0
Sometimes I find that while a proof can be carried out "by contradiction", this is a pretty sloppy way of proving the desired statement. I wonder if the "←" direction of the following proof is sound presentation of proof by contradiction.

Statement. An integer is even if and only if its square is even.

Proof. First suppose the integer n is even. Then for some k ∈ ℤ, n = 2k and n2 = 4k2 = 2(2k2), so n2 is even. Conversely, if n2 is even, suppose n is odd. Then n = 2k + 1 with k ∈ ℤ. Then n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, so n2 is odd; a contradiction. Thus n must be even. □

Is it messy to prove "n2 is even ⇒ n is even" (*) via contradiction? It seems like a jumble of words in this case. I didn't actually rely on the assumption "n2 is even" when directly showing that n = 2k + 1 leads to contradict that. I feel like all I've done is shown that the square of an odd integer is also odd. It seems like a messy way to go about it, there should be a more well-crafted proof for that.

In my opinion the next proof is a strong example of proof by contradiction:

Statement. Every integer greater than 1 can be written as a product of prime numbers.

Proof. Suppose towards contradiction that the result is false. Then let n > 1 be the smallest integer that cannot be written as a product of primes. n is not prime, so n = pq for some integers p, q with 1 < p ≤ q < n. Since p and q are both smaller than n, it must be possible to factor them into primes; thus n can be written as a product of primes after all, a contradiction. □

The difference between this and the previous statement proven is that the assumption made (towards contradiction) directly contradicts itself: we assumed n cannot be written as a product of primes, and showed that this implies that it indeed can be. I tend to think that presenting it this way really strikes at the core of proving by contradictions.

For the first proof about even numbers, I think there's a better way to carry that out. It just seemed to work when worded as a "proof by contradiction", but it's actually a simpler proof in disguise.
 
Mathematics news on Phys.org
nerdology said:
Proof.Conversely, if n2 is even, suppose n is odd. Then n = 2k + 1 with k ∈ ℤ. Then n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, so n2 is odd; a contradiction. Thus n must be even. □

I removed the first part of the proof. This is more of a contrapositive proof than contradiction:

n is odd => n2 is odd

is the same thing as

n is even <= n2 is even.

Amusingly, in the http://en.wikipedia.org/wiki/Proof_by_contrapositive" on the topic uses this example.
 
Last edited by a moderator:
LOL, oh wow yeah that is indeed amusing.

I guess the kinks I'm trying to work out are regarding the presentation of the proof. It seemed pretty ugly when shown as a "proof by contradiction". Stating it as showing the contrapositive works a lot nicer there, thanks.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top