I Is there a way to calculate this transformation?

Click For Summary
Calculating the distance traveled by a ball from a transformed perspective, such as a cylindrical coordinate system, involves determining the angle (θ) and the radial distance (r) from the observer's viewpoint. While θ can be easily identified, calculating r is more complex and may require knowledge of the ball's diameter and the distance to nearby landmarks like the tree-line. Trigonometry can be applied to find r, assuming a flat surface. The perspective view complicates measurements, as it distorts the dimensions of the polo field. Accurate calculations depend on the observer's position and the direction of the ball.
wirefree
Messages
110
Reaction score
21
Namaste & G'day!

Imagine a helicopter view of a Polo ground. It's length & breadth are known.

Screenshot_20240316-165049.png



Now you are seated where the blue dot is. Your view is such:

IMG_2024-03-16-16-48-17-200~2.jpg


How do mathematicians calculate the distance travelled by a ball from the second perspective?

From the top view, this would be trivial.

But now your view is transformed.
 
Mathematics news on Phys.org
I think of the second prespective in cylindrical coordinates (r,θ). θ is “easy” to determine, r is more difficult. In a perfect world, one could measure the diameter of the ball to determine its distance. There are other experimental techniques, but I am unsure exactly what you are looking for.
 
  • Like
Likes wirefree and FactChecker
Suppose the eye-point location is at the center of the polar coordinates (##r_{eye}=0##) and the angle, ##\theta##, of the polar coordinates of the ball are known. The distance to the ball location, ##r##, remains to be determined. Assuming a flat earth, ##r## can be calculated using trigonometry. You would need to know the distance to the tree-line. That tree-line has sides and its distance would require some calculations that depend on the direction.
 
Frabjous said:
I think of the second prespective in cylindrical coordinates (r,θ). θ is “easy” to determine, r is more difficult. In a perfect world, one could measure the diameter of the ball to determine its distance. There are other experimental techniques, but I am unsure exactly what you are looking for.
Here's a view:

Untitled1.png



You see how the perspective view squashes the 160yd width of the polo field.
 
FactChecker said:
Suppose the eye-point location is at the center of the polar coordinates (##r_{eye}=0##) and the angle, ##\theta##, of the polar coordinates of the ball are known. The distance to the ball location, ##r##, remains to be determined. Assuming a flat earth, ##r## can be calculated using trigonometry. You would need to know the distance to the tree-line. That tree-line has sides and its distance would require some calculations that depend on the direction.

I am interested in following your suggestion. Please annotate as briefly as convenient, Sir.
Untitled2.png
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 29 ·
Replies
29
Views
3K
Replies
30
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
7K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K