I Is there a way to calculate this transformation?

AI Thread Summary
Calculating the distance traveled by a ball from a transformed perspective, such as a cylindrical coordinate system, involves determining the angle (θ) and the radial distance (r) from the observer's viewpoint. While θ can be easily identified, calculating r is more complex and may require knowledge of the ball's diameter and the distance to nearby landmarks like the tree-line. Trigonometry can be applied to find r, assuming a flat surface. The perspective view complicates measurements, as it distorts the dimensions of the polo field. Accurate calculations depend on the observer's position and the direction of the ball.
wirefree
Messages
110
Reaction score
21
Namaste & G'day!

Imagine a helicopter view of a Polo ground. It's length & breadth are known.

Screenshot_20240316-165049.png



Now you are seated where the blue dot is. Your view is such:

IMG_2024-03-16-16-48-17-200~2.jpg


How do mathematicians calculate the distance travelled by a ball from the second perspective?

From the top view, this would be trivial.

But now your view is transformed.
 
Mathematics news on Phys.org
I think of the second prespective in cylindrical coordinates (r,θ). θ is “easy” to determine, r is more difficult. In a perfect world, one could measure the diameter of the ball to determine its distance. There are other experimental techniques, but I am unsure exactly what you are looking for.
 
  • Like
Likes wirefree and FactChecker
Suppose the eye-point location is at the center of the polar coordinates (##r_{eye}=0##) and the angle, ##\theta##, of the polar coordinates of the ball are known. The distance to the ball location, ##r##, remains to be determined. Assuming a flat earth, ##r## can be calculated using trigonometry. You would need to know the distance to the tree-line. That tree-line has sides and its distance would require some calculations that depend on the direction.
 
Frabjous said:
I think of the second prespective in cylindrical coordinates (r,θ). θ is “easy” to determine, r is more difficult. In a perfect world, one could measure the diameter of the ball to determine its distance. There are other experimental techniques, but I am unsure exactly what you are looking for.
Here's a view:

Untitled1.png



You see how the perspective view squashes the 160yd width of the polo field.
 
FactChecker said:
Suppose the eye-point location is at the center of the polar coordinates (##r_{eye}=0##) and the angle, ##\theta##, of the polar coordinates of the ball are known. The distance to the ball location, ##r##, remains to be determined. Assuming a flat earth, ##r## can be calculated using trigonometry. You would need to know the distance to the tree-line. That tree-line has sides and its distance would require some calculations that depend on the direction.

I am interested in following your suggestion. Please annotate as briefly as convenient, Sir.
Untitled2.png
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top