I think something you have to accept is that there is a limit to how much advanced physics can be explained without the help of the appropriate mathematics. I know it's frustrating when you can't find the understanding you're looking for, but please consider that the physicists you've spoken to do understand themselves what gravity—according to General Relativity (GR)—is. It is likely they are just struggling to explain it in an accessible way to someone who has a limited foundation in physics.
I agree the rubber sheet analogy does not do a good job of illustrating how GR works. I don't know that there is really a good illustration of it, outside of the actual mathematics of GR. Perhaps some of the educators here will have a better idea. In the meantime, I will give it a shot.
The answer to (2) is that curved spacetime essentially changes the notion of a straight line. Newton's understanding of inertia was that an object in motion that is not subject to any forces will continue to travel in a straight line. A straight line is defined as the shortest path between two points. Now, this continues to be true in Special Relativity (SR), with some caveats due to the fact that the geometry of spacetime is not quite the same as the geometry of space by itself. However, the basic idea is still true. An important point is that since we experience the passage of time, we are always moving through spacetime. We do so in the spacetime version of straight lines.
When something is curved, we may not be able to picture straight lines in the usual sense; but, we can still use the idea of the shortest distance between two points. For instance, on the surface of a globe, the shortest distance between two points is the segment of the great circle (that is, a full circumference of the sphere, like the lines of longitude or the equator; not the other lines of latitude since they are smaller circles) that connects the two points. You might find it helpful to play around with a globe to see how this works. Hence, great circles of a sphere are the generalization of the straight lines on flat paper. This is why if you plot the courses airplanes take on flat maps, the paths look curved: "straight" on a sphere and "straight" on a flat page are not the same thing.
Hence, we have the generalized law of inertia: in the absence of external forces, objects travel between two points according to the shortest path. Actual, the real requirement is that the path just be "extremal" but that's a mathematical detail that isn't really important for the main idea. So, by this principle, we would expect an object stuck onto a sphere but able to move freely (free, that is, of all forces besides whatever is required to keep it confined to the sphere) to move along great circles. Suppose we have a bug wandering around the surface of the globe (with no external gravitational field or any other forces like that), perhaps stuck on with little suction cups on its feet.
Now, as I said, we are always moving through spacetime. When spacetime is curved, the shortest paths taken by objects can make them behave in ways they wouldn't in flat space. Back to the globe picture, imagine two bugs wandering on surface. They stand on the equator some distance apart and both start walking north. That is, each bug walks up along a line of latitude toward the North Pole. As far as each bug is concerned, it's walking in a straight line, and these straight lines start out parallel to each other. In flat space, parallel lines stay parallel forever. For the bugs, though, they will eventually meet at the north pole. This is like the attractive "force" (though it is really, as you can see, not a force at all) in GR. If, instead, the two bugs want to stay the same distance apart as they wander around the globe, then one (or both) of them needs to apply a real force (according to the law of inertia) like a little bug-rocket in order to deviate away from great circles. So too, for you to stay where you are a fixed distance away from the centre of the earth, the Earth's surface must apply an upward force on you to keep you where you are. You feel a force (just like the bug) because you are being pushed away from your natural inertial motion, which would tend to pull you towards the Earth's centre. That "natural inertial motion" in curved space-time is what we call gravity.
As for your (1), why mass makes space-time curve: that is just a postulate of GR. Matter makes space-time curve according to a set of equations called the "Einstein field equations"; these have experimentally testable predictions. So far, GR has passed all these tests with flying colours. That fundamentally is why we believe matter causes space-time to curve. There are some theoretical arguments—like what I outlined above for (2)—that can be put forward to support it; however, I don't know how to describe them in an accessible away because they are very technical and mathematical. As Ibix said, a full understanding will probably require a proper quantum theory of gravity, which we do not currently have. It is best, I think, to just accept that it is a postulate of GR.