Convergent or Divergent: Is this a Convergent Series?

AI Thread Summary
The discussion centers on the confusion between a convergent sequence and a divergent series. The original poster believes their lecturer's assertion of a divergent series is incorrect, as they view it as convergent. However, it is clarified that while the sequence converges to 2, the series, which sums the terms, diverges. The distinction between a sequence and a series is emphasized as crucial for understanding the problem. This highlights the importance of grasping the difference between individual terms and their cumulative sum in mathematical analysis.
matthew1
Messages
5
Reaction score
0
Mod note: Moved from a homework section.
1. Homework Statement


this is my lecturer's notes, he says it is a divergent series, but this seems like an obvious convergent series to me..
could someone verify?

Homework Equations



https://www.dropbox.com/s/mc5rth0cgm94reg/incorrect maths.png?dl=0

The Attempt at a Solution

 
Last edited by a moderator:
Mathematics news on Phys.org
matthew1 said:

Homework Statement



this is my lecturer's notes, he says it is a divergent series, but this seems like an obvious convergent series to me..
could someone verify?

Homework Equations



https://www.dropbox.com/s/mc5rth0cgm94reg/incorrect maths.png?dl=0

The Attempt at a Solution

The series is the sum of all of the terms of the sequence. The sequence does converge to 2.

What is the sum of an infinite number of terms each of which is at least a little greater than 2 ?
 
SammyS said:
The series is the sum of all of the terms of the sequence. The sequence does converge to 2.

What is the sum of an infinite number of terms each of which is at least a little greater than 2 ?
Ah, I thought i was already looking at the series, but that was the terms of the sequence! thanks a lot :-)
 
matthew1 said:
Ah, I thought i was already looking at the series, but that was the terms of the sequence! thanks a lot :-)
Be sure you learn the difference between a sequence of terms, such as ##\{2 + e^{-m}\}_{m = 1}^{\infty}##, and a series, such as ##\sum_{m = 1}^{\infty}2 + e^{-m}##.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top