pwhitey86
- 5
- 0
Hi. I am new to formal proofs. Is the following a legitimate method for proving this assertion by contradiction.
Show A\cap B = \{\} \Leftrightarrow A \subseteq B^c
If A\cap B \neq \{\} then \exists \ x \ ST \ x \in A \ AND \ x \in B
Since x \in A \ \ \ A \subseteq B^c \Rightarrow x \in B^c
\Rightarrow x \in U \ AND \ x \notin B
This is a contradiction and thus no such x exists and therefore
A\cap B = \{\} \Leftarrow A \subseteq B^c
is this half the proof?
Show A\cap B = \{\} \Leftrightarrow A \subseteq B^c
If A\cap B \neq \{\} then \exists \ x \ ST \ x \in A \ AND \ x \in B
Since x \in A \ \ \ A \subseteq B^c \Rightarrow x \in B^c
\Rightarrow x \in U \ AND \ x \notin B
This is a contradiction and thus no such x exists and therefore
A\cap B = \{\} \Leftarrow A \subseteq B^c
is this half the proof?