Is this statement acceptable? (time derivative of a rotating vector)

Click For Summary

Homework Help Overview

The discussion revolves around the time derivative of a rotating vector, specifically examining the conditions under which certain approximations and definitions are valid. Participants are analyzing the implications of positive changes in angle and time, as well as the mathematical expressions involved in the differentiation of vectors with changing direction.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the relationship between changes in angle and time, questioning the assumptions behind the definitions of these changes. There is a discussion on the validity of certain mathematical limits and expressions related to the derivative of a vector with constant magnitude and changing direction.

Discussion Status

The conversation is active, with participants providing different perspectives on the mathematical expressions and definitions involved. Some participants have offered alternative approaches to demonstrate the concepts, while others are questioning the general acceptance of specific mathematical limits.

Contextual Notes

There are indications of differing interpretations regarding the mathematical limits and the definitions of the variables involved, which may influence the understanding of the problem. The discussion reflects a need for clarity on these points without reaching a definitive consensus.

Clockclocle
Messages
31
Reaction score
1
Homework Statement
Is this statement acceptable?
Relevant Equations
..........
Capture.PNG


I understand the approximation statement but he divide the |delta t| in the left but only delta t on the right. Is it true because delta phi would have the same sign as delta t ?
 
Last edited by a moderator:
Physics news on Phys.org
Yes. By definition ##\Delta \phi## is positive and the angle increases in the direction of the arrow in the top figure. ##\Delta t## is always positive.
 
  • Like
Likes   Reactions: Gavran
kuruman said:
Yes. By definition ##\Delta \phi## is positive and the angle increases in the direction of the arrow in the top figure. ##\Delta t## is always positive.
He also use the fact that lim |##\Delta A##/##\Delta t##| = |lim ##\Delta A##/##\Delta t##|. Is that accepted?
 
There is a more formal way to show the same thing which I prefer.

You have a vector ##\mathbf A## that has constant magnitude ##A## and direction ##\mathbf {\hat a}## that changes with time. You can write the vector as its constant magnitude times the unit vector specifying the direction, ##\mathbf A=A~\mathbf {\hat a}##. Now $$\frac{d\mathbf A}{dt}=A\frac{d\mathbf {\hat a}}{dt}.$$ To find the derivative of the unit vector ##\mathbf a##, consider the drawing on the right. A
Unit Vectors.png
unit vector in the direction of changing angle ##\theta## is perpendicular to ##\mathbf {\hat a}.## In terms of the fixed Cartesian unit vectors
$$\begin{align} & \mathbf {\hat a}=\cos\!\theta~\mathbf {\hat x}+\sin\!\theta~\mathbf {\hat y} \\
& \mathbf {\hat {\theta}}=-\sin\!\theta~\mathbf {\hat x}+\cos\!\theta~\mathbf {\hat y}
\end{align}$$Now from equation (1) $$\frac{d\mathbf {\hat a}}{dt}=\frac{d\theta}{dt}(-\sin\!\theta~\mathbf {\hat x}+\cos\!\theta~\mathbf {\hat y})=\frac{d\theta}{dt}\mathbf {\hat{\theta}}$$ and the time rate of change of the constant-magnitude vector ##\mathbf A## is $$\frac{d\mathbf A}{dt}=A\frac{d\mathbf {\hat a}}{dt}=A\frac{d\theta}{dt}\mathbf {\hat{\theta}}.$$
 
  • Like
Likes   Reactions: PhDeezNutz
Clockclocle said:
He also use the fact that lim |##\Delta A##/##\Delta t##| = |lim ##\Delta A##/##\Delta t##|. Is that accepted?
Not in general. Consider ##\lim _{x\rightarrow 0}(-1)^{\lfloor \frac 1x\rfloor}##.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
940
Replies
1
Views
2K
Replies
6
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K