Error Propagation in Mass Flow Rates

In summary, the conversation discusses a problem with calculating the error propagated by two different approaches to summing mass flow rates. The first approach is to add up all of the individual mass flow rates, while the second approach is to add up all of the masses and divide by the collection time. The individual masses are calculated by measuring the mass of liquid + container and subtracting the mass of the container. The conversation also includes a summary of the relevant equations and variables. The attempt at a solution shows that the two approaches do not result in the same value for propagated error, and suggests that there may be an error in the calculations.
  • #1
cjc0117
94
1
I tried posting this question in this forum a couple of weeks ago, but didn't get an answer to my question. I'm going to try posting it again using the formatting template so that it is hopefully clearer. I am also not sure if this is the right forum to be posting this in. It is a problem I ran into for one of my projects at work, rather than a homework question, and I am an engineer, not a physicist. Nevertheless, I thought this had more of a "homework feel" to it, and I noticed that most error propagation threads seem to be in the Physics homework forum. I don't think the problem requires any depth of engineering knowledge. I'm just trying to figure out why my two approaches to calculating a value from measured quantities do not result in the same value for propagated error.

1. Homework Statement


I am trying to find the error propagated by calculating the sum of a set of mass flow rates collected over the same length of time. The sum of mass flow rates can be calculated with two approaches, since the collection time is the same for all of them. Approach (1) is adding up all of the individual mass flow rates, and Approach (2) is adding up all of the masses and then dividing by the collection time. However, when I use standard error propagation formulas (http://lectureonline.cl.msu.edu/~mmp/labs/error/e2.htm) to derive an expression for the error in the sum of mass flow rates, I get two different answers depending on which of the two above approaches I use.

I have calculated the mass, [itex]m_{i}[/itex], of liquid exiting the outlet of stream [itex]i[/itex] for [itex]n[/itex] number of streams over a measured time period of [itex]t[/itex], by measuring the mass of liquid + container, [itex]M_{1,i}[/itex], and subtracting from that the measurement for the mass of the container, [itex]M_{2,i}[/itex]. The masses [itex]M_{1,i}[/itex] and [itex]M_{2,i}[/itex] both have the same measurement error (the error of the scale), which is the same for all n streams. Thus, the error in [itex]m_{i}[/itex] is the same for all streams. The liquid from each stream was collected simultaneously in separate containers (i.e., there are [itex]n[/itex] containers for [itex]n[/itex] streams), therefore, there is only one [itex]t[/itex] measurement for all of them. The mass flow rate, [itex]\dot{m}_{i}[/itex], is calculated for each stream [itex]i[/itex] by dividing the mass of the stream, [itex]m_{i}[/itex], by the collection time, [itex]t[/itex].

The above explanation can be summarized as follows:

Objective: Show that if [itex]\sum^n_{i=1}\dot{m}_i=\frac{\sum^n_{i=1}m_{i}}{t}[/itex] then [itex]\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}=\delta{\left(\frac{\sum^n_{i=1}m_{i}}{t}\right)}[/itex]

Define: [itex]M_{1,i}\ \mbox{and}\ M_{2,i}\ \mbox{are measured masses}\\\ \\m_{i}=M_{1,i}-M_{2,i}\ \mbox{for all}\ i\\\ \\\dot{m_{i}}=\frac{m_{i}}{t}\ \mbox{for all}\ i[/itex]

Given: [itex]t=const.\ \mbox{(i.e., all masses were collected over the same time period)}\\\delta{M_{1,i}}=\delta{M_{2,i}}=\delta{M}=const.\ \mbox{for all}\ i[/itex]

Homework Equations


[/B]
radd.jpg


rmult.jpg


From http://lectureonline.cl.msu.edu/~mmp/labs/error/e2.htm

The Attempt at a Solution



First, I show that [itex]\sum^n_{i=1}\dot{m}_i=\frac{\sum^n_{i=1}m_{i}}{t}[/itex]:

[itex]\sum^n_{i=1}\dot{m}_i\stackrel{?}{=}\frac{\sum^n_{i=1}m_{i}}{t}\\\ \\\dot{m}_{1}+\dot{m}_{2}+...+\dot{m}_{n}\stackrel{?}{=}\frac{\sum^n_{i=1}m_{i}}{t}\\\ \\\frac{m_{1}}{t}+\frac{m_{2}}{t}+...+\frac{m_{n}}{t}\stackrel{?}{=}\frac{\sum^n_{i=1}m_{i}}{t}\\\ \\\frac{1}{t}\left(m_{1}+m_{2}+...+m_{n}\right)\stackrel{?}{=}\frac{\sum^n_{i=1}m_{i}}{t}\\\ \\\frac{\sum^n_{i=1}m_{i}}{t}=\frac{\sum^n_{i=1}m_{i}}{t}[/itex]

Next, I calculate [itex]\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}[/itex] and [itex]\delta{\left(\frac{\sum^n_{i=1}m_{i}}{t}\right)}[/itex] in an attempt to show that they are equal:

[itex]\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}=\sqrt{\sum^n_{i=1}\left(\delta{\dot{m}_{i}}\right)^2}\\\ \\\ \ \ \ \ \ \ \ \ \ \delta{\dot{m}_{i}}=\dot{m}_{i}\sqrt{\left(\frac{\delta{m_{i}}}{m_{i}}\right)^2+\left(\frac{\delta{t}}{t}\right)^2}\\\ \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \delta{m_{i}}=\sqrt{\left(\delta{M_{1,i}}\right)^2+\left(\delta{M_{2,i}}\right)^2}=\sqrt{2\left(\delta{M}\right)^2}=\sqrt{2}\delta{M}=\delta{m}=const.\ \mbox{for all}\ i\\\ \\\ \ \ \ \ \ \ \ \ \ \delta{\dot{m}_{i}}=\dot{m}_{i}\sqrt{\left(\frac{\delta{m_{i}}}{m_{i}}\right)^2+\left(\frac{\delta{t}}{t}\right)^2}=\dot{m}_{i}\sqrt{\left(\frac{\delta{m}}{m_{i}}\right)^2+\left(\frac{\delta{t}}{t}\right)^2}=\dot{m}_{i}\sqrt{2\left(\frac{\delta{M}}{m_{i}}\right)^2+\left(\frac{\delta{t}}{t}\right)^2}\\\ \\\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}=\sqrt{\sum^n_{i=1}\dot{m}_{i}^2\left[2\left(\frac{\delta{M}}{m_{i}}\right)^2+\left(\frac{\delta{t}}{t}\right)^2\right]}\\\ \\\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}=\sqrt{\sum^n_{i=1}\left(\frac{m_{i}}{t}\right)^2\left[2\left(\frac{\delta{M}}{m_{i}}\right)^2+\left(\frac{\delta{t}}{t}\right)^2\right]}\\\ \\\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}=\sqrt{\frac{1}{t^2}\sum^n_{i=1}m_{i}^2\left[2\left(\frac{\delta{M}}{m_{i}}\right)^2+\left(\frac{\delta{t}}{t}\right)^2\right]}\\\ \\\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}=\frac{1}{t}\sqrt{\sum^n_{i=1}\left[2\left(\delta{M}\right)^2+m_{i}^2\left(\frac{\delta{t}}{t}\right)^2\right]}\\\ \\\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}=\frac{1}{t}\sqrt{\sum^n_{i=1}2\left(\delta{M}\right)^2+\sum^n_{i=1}m_{i}^2\left(\frac{\delta{t}}{t}\right)^2}\\\ \\\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}=\frac{1}{t}\sqrt{2n\left(\delta{M}\right)^2+\sum^n_{i=1}m_{i}^2\left(\frac{\delta{t}}{t}\right)^2}\\\ \\\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}=\frac{\sum^n_{i=1}m_{i}}{t}\sqrt{2n\left(\frac{\delta{M}}{\sum^n_{i=1}m_{i}}\right)^2+\frac{\sum^n_{i=1}m_{i}^2}{\left(\sum^n_{i=1}m_{i}\right)^2}\left(\frac{\delta{t}}{t}\right)^2}\ \ \ \ \ \ \ \ \ \ \mbox{*(EQN. 1)*}\\\ \\\ \\\delta{\left(\frac{\sum^n_{i=1}m_{i}}{t}\right)}=\frac{\sum^n_{i=1}m_{i}}{t}\sqrt{\left(\frac{\delta{\left(\sum^n_{i=1}m_{i}\right)}}{\sum^n_{i=1}m_{i}}\right)^2+\left(\frac{\delta{t}}{t}\right)^2}\\\ \\\ \ \ \ \ \ \ \ \ \ \delta{\left(\sum^n_{i=1}m_{i}\right)}=\sqrt{\sum^n_{i=1}\left(\delta{m_{i}}\right)^2}\\\ \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \delta{m_{i}}=\sqrt{\left(\delta{M_{1,i}}\right)^2+\left(\delta{M_{2,i}}\right)^2}=\sqrt{2\left(\delta{M}\right)^2}=\sqrt{2}\delta{M}=\delta{m}=const.\ \mbox{for all}\ i\\\ \\\ \ \ \ \ \ \ \ \ \ \delta{\left(\sum^n_{i=1}m_{i}\right)}=\sqrt{\sum^n_{i=1}\left(\delta{m_{i}}\right)^2}=\sqrt{\sum^n_{i=1}\left(\delta{m}\right)^2}=\sqrt{n\left(\delta{m}\right)^2}=\sqrt{2n}\delta{M}\\\ \\\delta{\left(\frac{\sum^n_{i=1}m_{i}}{t}\right)}=\frac{\sum^n_{i=1}m_{i}}{t}\sqrt{\left(\frac{\sqrt{2n}\delta{M}}{\sum^n_{i=1}m_{i}}\right)^2+\left(\frac{\delta{t}}{t}\right)^2}\\\ \\\delta{\left(\frac{\sum^n_{i=1}m_{i}}{t}\right)}=\frac{\sum^n_{i=1}m_{i}}{t}\sqrt{2n\left(\frac{\delta{M}}{\sum^n_{i=1}m_{i}}\right)^2+\left(\frac{\delta{t}}{t}\right)^2}\ \ \ \ \ \ \ \ \ \ \mbox{*(EQN. 2)*}[/itex]

(EQN. 1) is not equivalent to (EQN. 2), because the second term in the radical is multiplied by the extra [itex]\frac{\sum^n_{i=1}m_{i}^2}{\left(\sum^n_{i=1}m_{i}\right)^2}[/itex] term. This would suggest that [itex]\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}\neq\delta{\left(\frac{\sum^n_{i=1}m_{i}}{t}\right)}[/itex]. However, if [itex]\sum^n_{i=1}\dot{m}_i=\frac{\sum^n_{i=1}m_{i}}{t}[/itex] then why shouldn't [itex]\delta{\left(\sum^n_{i=1}\dot{m}_{i}\right)}=\delta{\left(\frac{\sum^n_{i=1}m_{i}}{t}\right)}[/itex]? Where have I gone wrong?
 
  • Like
Likes mfb
Physics news on Phys.org
  • #2
Your δt for the different streams are not uncorrelated. You have to take correlation into account - equation 2 does that. Otherwise you underestimate the contribution coming from this source, by assuming every time varies independently (so the effect would cancel out partially).

Where do your errors for the scales come from? If it is some calibration issue, they might be correlated as well.
 

What is error propagation in mass flow rates?

Error propagation in mass flow rates is the process of determining the amount of uncertainty or error in a measurement of mass flow rate. It involves analyzing the sources of error and how they affect the final measurement.

Why is error propagation important in mass flow measurements?

Error propagation is important because it allows us to understand the accuracy and reliability of our mass flow rate measurements. By identifying and quantifying the sources of error, we can improve the precision and validity of our data.

What are the sources of error in mass flow rate measurements?

The sources of error in mass flow rate measurements can include instrument error, environmental factors, and human error. Instrument error can be caused by a malfunctioning or inaccurate flow meter. Environmental factors such as temperature and pressure can also affect the measurement. Human error can occur during the setup or reading of the measurement.

How is error propagation calculated in mass flow rates?

Error propagation is calculated by using the formula for propagation of uncertainty. This involves identifying the sources of error and their corresponding uncertainties, and using mathematical operations to determine the overall uncertainty in the final measurement.

How can error propagation be minimized in mass flow rate measurements?

Error propagation can be minimized by using high-quality instrumentation, maintaining a controlled and stable environment, and carefully following measurement procedures. Regular calibration and verification of equipment can also help reduce error in mass flow rate measurements.

Similar threads

  • Introductory Physics Homework Help
Replies
8
Views
600
  • Introductory Physics Homework Help
Replies
2
Views
241
  • Introductory Physics Homework Help
Replies
6
Views
171
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
12
Views
1K
  • Introductory Physics Homework Help
Replies
28
Views
341
  • Introductory Physics Homework Help
Replies
6
Views
242
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
911
  • Introductory Physics Homework Help
Replies
27
Views
2K
Back
Top