- #1
Math100
- 771
- 219
- Homework Statement
- Find the Euler equation (strong form) for ## \int ((\mathrm{u}')^2+e^{\mathrm{u}}) \, dx ##.
- Relevant Equations
- Euler's equation: ## J(y)=\int_{a}^{b} F(x, y, y', y") \, dx ##
By the Euler's equation of the functional, we have
## J(\mathrm u)=\int ((\mathrm{u})^{2}+e^{\mathrm{u}}) \, dx ##.
Then ## J(\mathrm{u}+\epsilon\eta)=\int ((\mathrm{u}'+\epsilon\eta')^{2}+e^{\mathrm{u}+\epsilon\eta}) \, dx=\int ((\mathrm{u})'^{2}+2\epsilon\mathrm{u}'\eta'+\epsilon^{2}(\eta')^{2}+e^{\mathrm{u}}+\epsilon e^{\mathrm{u}}\eta) \, dx ##.
Note that ## \frac {J(\mathrm{u}+\epsilon\eta)-J(\mathrm{u})} {\epsilon}=\int (2\mathrm{u}'\eta'+\epsilon(\eta')^{2}+e^{\mathrm{u}}\eta) \, dx ##.
Consider the following limit:
## \lim_{\epsilon \rightarrow 0} \frac {J(\mathrm{u}+\epsilon\eta)-J(\mathrm{u})} {\epsilon}=\int (2\mathrm{u}'\eta'+e^{\mathrm{u}}\eta) \, dx=0 ##.
Applying the method of integration by parts, we obtain
## \int (2\mathrm{u}'\eta'+e^{\mathrm{u}}\eta) \, dx=(2\mathrm{u}'\eta)-\int (2\mathrm{u}''\eta+e^{\mathrm{u}}\eta) \, dx=0 ##.
Thus ## 2\mathrm{u}'\eta-2\mathrm{u}''\eta-e^{\mathrm{u}}\eta=0\implies 2\mathrm{u}'-2\mathrm{u}''-e^{\mathrm{u}}=0 ##.
Therefore, the Euler equation (strong form) is ## 2\mathrm{u}'-2\mathrm{u}''-e^{\mathrm{u}}=0 ##.
## J(\mathrm u)=\int ((\mathrm{u})^{2}+e^{\mathrm{u}}) \, dx ##.
Then ## J(\mathrm{u}+\epsilon\eta)=\int ((\mathrm{u}'+\epsilon\eta')^{2}+e^{\mathrm{u}+\epsilon\eta}) \, dx=\int ((\mathrm{u})'^{2}+2\epsilon\mathrm{u}'\eta'+\epsilon^{2}(\eta')^{2}+e^{\mathrm{u}}+\epsilon e^{\mathrm{u}}\eta) \, dx ##.
Note that ## \frac {J(\mathrm{u}+\epsilon\eta)-J(\mathrm{u})} {\epsilon}=\int (2\mathrm{u}'\eta'+\epsilon(\eta')^{2}+e^{\mathrm{u}}\eta) \, dx ##.
Consider the following limit:
## \lim_{\epsilon \rightarrow 0} \frac {J(\mathrm{u}+\epsilon\eta)-J(\mathrm{u})} {\epsilon}=\int (2\mathrm{u}'\eta'+e^{\mathrm{u}}\eta) \, dx=0 ##.
Applying the method of integration by parts, we obtain
## \int (2\mathrm{u}'\eta'+e^{\mathrm{u}}\eta) \, dx=(2\mathrm{u}'\eta)-\int (2\mathrm{u}''\eta+e^{\mathrm{u}}\eta) \, dx=0 ##.
Thus ## 2\mathrm{u}'\eta-2\mathrm{u}''\eta-e^{\mathrm{u}}\eta=0\implies 2\mathrm{u}'-2\mathrm{u}''-e^{\mathrm{u}}=0 ##.
Therefore, the Euler equation (strong form) is ## 2\mathrm{u}'-2\mathrm{u}''-e^{\mathrm{u}}=0 ##.
Last edited by a moderator: