Is this what happens to heat physically when moving from HOT to LOW

  • Thread starter Thread starter astralfx
  • Start date Start date
  • Tags Tags
    Heat Hot
AI Thread Summary
Heat transfer occurs through both molecular collisions and infrared radiation, with the kinetic theory effectively describing conduction in gases. When atoms vibrate, they emit infrared photons, which can be absorbed or repelled by neighboring atoms based on their energy states. The transfer of heat is influenced by temperature gradients, where hotter regions emit more energy and cooler regions absorb it, leading to a net flow of heat from hot to cold. However, heat is not synonymous with infrared radiation; it represents energy distributed across various forms, including kinetic energy. In most scenarios, heat transfer primarily happens through molecular interactions rather than radiation.
astralfx
Messages
22
Reaction score
0
I was just bored during a lecture and started dozing of, then I had an idea of how heat travels. I tried searching in google if I was right, but I didn't know what to type (I tried stuff to do with second law of thermo, and IR photons traveling but couldn't find anything).

So yeah I thought I'd ask you lot before the physicsforum because I cba to find my login/pass, when atoms vibrate/move/rotate it emits heat radiation (IR photon), what my original thought was how can these randomly emitted IR photons at random angles travel to the cooler region.

That's when it hit me, is it because when IR photons are produced and come in contact with another atom, "all or nothing" law occurs, so either the IR photon is absorbed by the neighbouring atom or it isn't, and if it isn't or the IR photon is in the ER field of the atom, it causes the photon to be repelled by the atoms ER field thus changing the angle of the IR photon. Because the cooler region, well between the cool and hot region is a gradient of hot -> cool, thus atoms are more likely to absorb the IR photons between the gradient rather than anywhere else eventually levelling the energy of all atoms in the gradient, thus for all the deflections occurring from the IR photon to atoms, it's more likely to travel through the gradient because it will end up reaching there even if it didn't start at those atoms because other atoms NOT in the gradient are most likely at there minimum energy needs so no need to absorb any more energy.

Sorry for the bad explanation, the image is sort of what I mean. Am I correct or ...?


208zdyo.jpg
 
Science news on Phys.org
Conduction of thermal energy through a gas is due to 'mechanical' interactions between adjacent particles. That's what the standard gas model in kinetic theory is based on. The photons that come into play with molecular 'collisions' are virtual photons (Feynman's model of force mediation between particles). This is not the same as the IR photons which are passed during radiation and absorption at a long distance (as in the greenhouse effect etc.).
Afaik, the transfer of heat through gases is described pretty well using kinetic theory. Although your idea must have some relevance.
 
I think the fact that heat travels down a temperature grade is purely statistical. Say you have region A emitting X amount of heat and region B absorbing 1/2 of it. Region B is hotter and so emits 2X, and region A absorbs 1/2 of that. So heat transfer from A to B is X/2 but heat transfer from B to A is X so the net transfer is X/2 from B to A.
 
First of all, heat is not the same thing as infrared radiation. Heat is energy that has been randomly spread out among various degrees of freedom in the system. In other words, heat is not a single form of energy, but rather energy that has been split up among all of the available forms of energy, including kinetic energy of the molecules present (further subdivided into translational, vibrational, rotational), interaction energies, and radiation (such as infrared).

In most situations you might find on Earth, most of the heat transfer is through collisions between molecules and not through infrared emission.

So, a high temperature gas comes in contact with a low temperature gas-- the molecules in the high temperature gas are moving faster, bouncing around like crazy. Where they come in contact with the low temperature gas, they bump into each other and the fast particles slow down, and the slow particles speed up.
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy. So in the video it says: Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles. Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total...
Back
Top