Jake's questions about integrations

  • Context: MHB 
  • Thread starter Thread starter Prove It
  • Start date Start date
Click For Summary
SUMMARY

This discussion focuses on calculating the volumes of solids of revolution using integration techniques. The first volume is derived from rotating the function \( y = 4 - x^2 \) about the line \( y = -\frac{1}{2} \), resulting in a volume of \( \frac{112\pi}{5} \) cubic units, approximately 70.37 cubic units. The second volume is calculated by integrating the area of vertically oriented cylinders formed by the function \( y = 3 + \frac{1}{4}\sqrt{x} \) over the interval \( x \in [1, \frac{3}{2}] \), yielding a volume of \( \frac{(142 + 9\sqrt{6})\pi}{40} \) cubic units, approximately 12.88 cubic units.

PREREQUISITES
  • Understanding of integral calculus and volume of revolution concepts
  • Familiarity with functions and their graphical representations
  • Knowledge of cylindrical shells method for volume calculation
  • Proficiency in evaluating definite integrals
NEXT STEPS
  • Explore the method of cylindrical shells for volume calculations
  • Learn about the disk and washer methods for solids of revolution
  • Study advanced integration techniques, including integration by parts
  • Investigate applications of volume calculations in physics and engineering
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are involved in volume calculations and solid geometry. This discussion is particularly beneficial for those studying calculus and its applications in real-world scenarios.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5590

5. To start with, we should work out the x intercepts, they are x = -2 and x = 2. That means your region in the first quadrant will be integrated over $\displaystyle \begin{align*} x \in [0,2] \end{align*}$.

You should note that rotating the function $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$ about the line $\displaystyle \begin{align*} y = -\frac{1}{2} \end{align*}$ will give the exact same volume as rotating $\displaystyle \begin{align*} y = \frac{9}{2} - x^2 \end{align*}$ around the x axis. We would then subtract the volume of the region bounded by the line $\displaystyle \begin{align*} y = \frac{1}{2} \end{align*}$ rotated about the x axis.

So our required volume is

$\displaystyle \begin{align*} V &= \int_0^2{ \pi\,\left( \frac{9}{2} - x^2 \right) ^2 \,\mathrm{d}x } - \int_0^2{ \pi\,\left( \frac{1}{2} \right) ^2\,\mathrm{d}x } \\ &= \pi \int_0^2{ \left[ \left( \frac{9}{2} - x^2 \right) ^2 - \left( \frac{1}{2} \right) ^2 \right] \,\mathrm{d}x } \\ &= \pi \int_0^2{ \left( \frac{81}{4} - 9\,x^2 + x^4 - \frac{1}{4} \right) \,\mathrm{d}x } \\ &= \pi \int_0^2{ \left( 20 - 9\,x^2 + x^4 \right) \,\mathrm{d}x } \\ &= \pi \,\left[ 20\,x - 3\,x^3 + \frac{x^5}{5} \right] _0^2 \\ &= \pi \,\left[ \left( 20 \cdot 2 - 3 \cdot 2^3 + \frac{2^5}{5} \right) - \left( 20 \cdot 0 - 3 \cdot 0^3 + \frac{0^5}{5} \right) \right] \\ &= \pi \, \left( 40 - 24 + \frac{32}{5} - 0 \right) \\ &= \pi \, \left( 16 + \frac{32}{5} \right) \\ &= \frac{112\,\pi}{5}\,\textrm{units}^3 \\ &\approx 70.371\,68 \, \textrm{units}^3 \end{align*}$I will do the second question when I have a spare moment.
 

Attachments

  • questions.jpg
    questions.jpg
    77.7 KB · Views: 82
Physics news on Phys.org
To evaluate the second volume, you need to imagine the region being made up of a very large number of vertically oriented cylinders. The areas of the curved surfaces of the cylinders together build up to the volume of your solid.

In each cylinder, the radius is the x value, and the height is the y value. So each cylinder has area $\displaystyle \begin{align*} 2\,\pi\,x\,y \end{align*}$, where $\displaystyle \begin{align*} y = 3 + \frac{1}{4}\,\sqrt{x} \end{align*}$ and $\displaystyle \begin{align*} x \in \left[ 1, \frac{3}{2} \right] \end{align*}$. Thus the volume is

$\displaystyle \begin{align*} V &= \int_1^{\frac{3}{2}}{ 2\,\pi\,x\,\left( 3 + \frac{1}{4}\,\sqrt{x} \right) \,\mathrm{d}x } \\ &= 2\,\pi\int_1^{\frac{3}{2}}{ \left( 3\,x + \frac{1}{4}\,x^{\frac{3}{2}} \right) \,\mathrm{d}x } \\ &= 2\,\pi\,\left[ \frac{3\,x^2}{2} + \frac{1}{4}\,\left( \frac{x^{\frac{5}{2}}}{\frac{5}{2}} \right) \right]_1^{\frac{3}{2}} \\ &= 2\,\pi\,\left[ \frac{3\,x^2}{2} + \frac{x^{\frac{5}{2}}}{10} \right] _1^{\frac{3}{2}} \\ &= 2\,\pi\,\left\{ \left[ \frac{3\,\left( \frac{3}{2} \right) ^2}{2} + \frac{\left( \frac{3}{2} \right) ^{\frac{5}{2}}}{10} \right] - \left[ \frac{3\,\left( 1 \right) ^2}{2} + \frac{1^{\frac{5}{2}}}{10} \right] \right\} \\ &= 2\,\pi \,\left( \frac{27}{8} + \frac{9\,\sqrt{6}}{80} - \frac{3}{2} - \frac{1}{10} \right) \\ &= \pi\,\left( \frac{27}{4} + \frac{9\,\sqrt{6}}{40} - 3 - \frac{1}{5} \right) \\ &= \pi \,\left( \frac{270}{40} + \frac{9\,\sqrt{6}}{40} - \frac{120}{40} - \frac{8}{40} \right) \\ &= \frac{\left( 142 + 9\,\sqrt{6} \right)\,\pi }{40}\,\textrm{units}^3 \\ &\approx 12.884\,10\,\textrm{units}^3 \end{align*}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 2 ·
Replies
2
Views
6K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
11K