MHB Jake's questions about integrations

  • Thread starter Thread starter Prove It
  • Start date Start date
AI Thread Summary
The discussion focuses on calculating volumes of solids formed by rotating functions around specified axes. The first volume is derived from the function y = 4 - x², yielding a result of approximately 70.37 cubic units after integrating over the interval [0, 2]. The second volume involves the function y = 3 + (1/4)√x, with integration performed over the interval [1, 3/2], resulting in approximately 12.88 cubic units. Key techniques include using cylindrical shells and applying the disk method for volume calculations. The calculations emphasize the importance of correctly setting up the integrals based on the given functions and intervals.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
View attachment 5590

5. To start with, we should work out the x intercepts, they are x = -2 and x = 2. That means your region in the first quadrant will be integrated over $\displaystyle \begin{align*} x \in [0,2] \end{align*}$.

You should note that rotating the function $\displaystyle \begin{align*} y = 4 - x^2 \end{align*}$ about the line $\displaystyle \begin{align*} y = -\frac{1}{2} \end{align*}$ will give the exact same volume as rotating $\displaystyle \begin{align*} y = \frac{9}{2} - x^2 \end{align*}$ around the x axis. We would then subtract the volume of the region bounded by the line $\displaystyle \begin{align*} y = \frac{1}{2} \end{align*}$ rotated about the x axis.

So our required volume is

$\displaystyle \begin{align*} V &= \int_0^2{ \pi\,\left( \frac{9}{2} - x^2 \right) ^2 \,\mathrm{d}x } - \int_0^2{ \pi\,\left( \frac{1}{2} \right) ^2\,\mathrm{d}x } \\ &= \pi \int_0^2{ \left[ \left( \frac{9}{2} - x^2 \right) ^2 - \left( \frac{1}{2} \right) ^2 \right] \,\mathrm{d}x } \\ &= \pi \int_0^2{ \left( \frac{81}{4} - 9\,x^2 + x^4 - \frac{1}{4} \right) \,\mathrm{d}x } \\ &= \pi \int_0^2{ \left( 20 - 9\,x^2 + x^4 \right) \,\mathrm{d}x } \\ &= \pi \,\left[ 20\,x - 3\,x^3 + \frac{x^5}{5} \right] _0^2 \\ &= \pi \,\left[ \left( 20 \cdot 2 - 3 \cdot 2^3 + \frac{2^5}{5} \right) - \left( 20 \cdot 0 - 3 \cdot 0^3 + \frac{0^5}{5} \right) \right] \\ &= \pi \, \left( 40 - 24 + \frac{32}{5} - 0 \right) \\ &= \pi \, \left( 16 + \frac{32}{5} \right) \\ &= \frac{112\,\pi}{5}\,\textrm{units}^3 \\ &\approx 70.371\,68 \, \textrm{units}^3 \end{align*}$I will do the second question when I have a spare moment.
 

Attachments

  • questions.jpg
    questions.jpg
    77.7 KB · Views: 80
Mathematics news on Phys.org
To evaluate the second volume, you need to imagine the region being made up of a very large number of vertically oriented cylinders. The areas of the curved surfaces of the cylinders together build up to the volume of your solid.

In each cylinder, the radius is the x value, and the height is the y value. So each cylinder has area $\displaystyle \begin{align*} 2\,\pi\,x\,y \end{align*}$, where $\displaystyle \begin{align*} y = 3 + \frac{1}{4}\,\sqrt{x} \end{align*}$ and $\displaystyle \begin{align*} x \in \left[ 1, \frac{3}{2} \right] \end{align*}$. Thus the volume is

$\displaystyle \begin{align*} V &= \int_1^{\frac{3}{2}}{ 2\,\pi\,x\,\left( 3 + \frac{1}{4}\,\sqrt{x} \right) \,\mathrm{d}x } \\ &= 2\,\pi\int_1^{\frac{3}{2}}{ \left( 3\,x + \frac{1}{4}\,x^{\frac{3}{2}} \right) \,\mathrm{d}x } \\ &= 2\,\pi\,\left[ \frac{3\,x^2}{2} + \frac{1}{4}\,\left( \frac{x^{\frac{5}{2}}}{\frac{5}{2}} \right) \right]_1^{\frac{3}{2}} \\ &= 2\,\pi\,\left[ \frac{3\,x^2}{2} + \frac{x^{\frac{5}{2}}}{10} \right] _1^{\frac{3}{2}} \\ &= 2\,\pi\,\left\{ \left[ \frac{3\,\left( \frac{3}{2} \right) ^2}{2} + \frac{\left( \frac{3}{2} \right) ^{\frac{5}{2}}}{10} \right] - \left[ \frac{3\,\left( 1 \right) ^2}{2} + \frac{1^{\frac{5}{2}}}{10} \right] \right\} \\ &= 2\,\pi \,\left( \frac{27}{8} + \frac{9\,\sqrt{6}}{80} - \frac{3}{2} - \frac{1}{10} \right) \\ &= \pi\,\left( \frac{27}{4} + \frac{9\,\sqrt{6}}{40} - 3 - \frac{1}{5} \right) \\ &= \pi \,\left( \frac{270}{40} + \frac{9\,\sqrt{6}}{40} - \frac{120}{40} - \frac{8}{40} \right) \\ &= \frac{\left( 142 + 9\,\sqrt{6} \right)\,\pi }{40}\,\textrm{units}^3 \\ &\approx 12.884\,10\,\textrm{units}^3 \end{align*}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
11K
Replies
2
Views
5K
Replies
1
Views
10K
Replies
4
Views
11K
Replies
1
Views
6K
Replies
4
Views
11K
Back
Top