I Kappa factor in heat equation and heat Flux

AI Thread Summary
The discussion centers on a simulation project involving two concentric cylinders with an insulating material, aiming to analyze spatial and heat flux evolution. The user observes that changing the kappa value of the insulator does not affect the heat flux, despite variations in temperature. The equation j_q = -k(r)∇·T is referenced, indicating the relationship between thermal conductivity and temperature gradient. Participants suggest documenting the analysis in detail to clarify the observed phenomenon. The issue highlights a potential misunderstanding of how kappa influences heat flux in the context of the heat equation.
George444fg
Messages
25
Reaction score
4
I am doing a project, actually it is a simulation. And we aim to determine the spatial and heat flux evolution of the system. The system consists of two concentric cylinders separated by an insulating material. I change the value of kappa of the insulator but the heat flux remains always the same, despite the change in the evolution of the temperature. Why this is happening?
 
Science news on Phys.org
George444fg said:
I am doing a project, actually it is a simulation. And we aim to determine the spatial and heat flux evolution of the system. The system consists of two concentric cylinders separated by an insulating material. I change the value of kappa of the insulator but the heat flux remains always the same, despite the change in the evolution of the temperature. Why this is happening?
What exactly is kappa, and what, more precisely, is the particular problem you are trying to solve? Also, documenting some of your analysis might be helpful.
 
I mean it is the equation j_q=-k(r)\nabla \cdot T. I use the heat equation. The point being that no matter the values kappa gets the heat flux is always the same
 
George444fg said:
I mean it is the equation j_q=-k(r)\nabla \cdot T. I use the heat equation. The point being that no matter the values kappa gets the heat flux is always the same
Like I said, let's see what you did in detail.
 
Problem: You’re an Uber driver with a Tesla Model 3. Today’s low: 30F, high: 65F. You want to reach a USD$ profit target in the least number of hours, but your choices could have added cost. Do you preheat the battery only when you are headed to the charging station (to increase the charging rate by warming the battery — however the battery might not be “warm enough” when your reach the charger and thus slower charging rates), or do you always “navigate to the charger” the entire day (which...
Been around 40 years since I took basic physics in college and while I remember doing some examples of insulation values / energy conduction, I doubt I could to the math now even if I could find the formulas. I have some some corrugated plastic sheet (think of the plastic signs you see on the side of the road) that is used in bee hives. Also have some used in a green house though a bit different in dimensions than this example but the general approach should still apply. Typically, both...
Thread 'Is Callen right in claiming dQ=TdS for all quasi-static processes?'
Hello! I am currently reading the second edition of Callen's Thermodynamics and an Introduction to Thermostatistics, and I have a question regarding Callen's definition of quasi-static. On page 96, Callen says: Another way of characterizing Callen's definition is that a process is quasi-static if it traces out a continuous curve in the system's configuration space. So far it's all well and good. A little later, Callen claims that the identification of $$TdS$$ as the heat transfer is only...
Back
Top