MHB Kendra N's question at Yahoo Answers regarding the Midpoint Rule

  • Thread starter Thread starter MarkFL
  • Start date Start date
AI Thread Summary
The discussion focuses on using the Midpoint Rule to approximate the integral of 2 cos^5(x) from 0 to π/2 with n set to 4. The formula for the Midpoint Rule is presented, leading to the calculation of M_4, which involves evaluating the function at specific midpoints. The final approximation calculated is M_4 ≈ 1.0667, rounded to four decimal places. Additionally, the true value of the integral is provided for comparison, which is approximately 1.0667. This demonstrates the effectiveness of the Midpoint Rule in estimating definite integrals.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal?

Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal places

∫ 2 cos^5 (x) dx from x = 0 to x = π/2, n = 4

Here is a link to the question:

Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Kendra N,

The Midpoint Rule is the approximation $\displaystyle \int_a^b f(x)\,dx\approx M_n$ where:

$\displaystyle M_n=\frac{b-a}{n}\sum_{k=1}^n\left[f\left(\frac{x_{k-1}+x_k}{2} \right) \right]$

We are asked to use this rule to approximate:

$\displaystyle 2\int_0^{\frac{\pi}{2}}\cos^5(x)\,dx$

Identifying:

$\displaystyle a=0,\,b=\frac{\pi}{2},\,n=4,\,f(x)=\cos^5(x),\,x_k=k\cdot\frac{\pi}{8}$, we have:

$\displaystyle M_4=2\frac{\frac{\pi}{2}-0}{4}\sum_{k=1}^4\left[\cos^5\left(\frac{(k-1)\cdot\frac{\pi}{8}+k\cdot\frac{\pi}{8}}{2} \right) \right]$

This simplifies to:

$\displaystyle M_4=\frac{\pi}{4}\sum_{k=1}^n\left[\cos^5\left(\frac{\pi}{16}(2k-1) \right) \right]$

Using a calculator/computer and rounding to 4 decimal places, we find:

$\displaystyle M_4\approx1.0667$

For comparison, the true value of the integral is:

$\displaystyle 2\int_0^{\frac{\pi}{2}}\cos^5(x)\,dx=\frac{16}{15}=1.0\bar{6}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top