Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Killing fields as eigenvectors of Ricci tensor

  1. Aug 31, 2013 #1

    WannabeNewton

    User Avatar
    Science Advisor

    Hi guys! I need help on a problem from one of my GR texts. Suppose that ##\xi^a## is a killing vector field and consider its twist ##\omega_a = \epsilon_{abcd}\xi^b \nabla^c \xi^d##. I must show that ##\omega_a = \nabla_a \omega## for some scalar field ##\omega##, which is equivalent to showing ##(d\omega)_{ab} = \nabla_{[a}\omega_{b]} = 0##, if and only if ##\xi^a## is an eigenvector of the Ricci tensor i.e. ##R^{a}{}{}_{b}\xi^b = \lambda \xi^{a}## for some scalar field ##\lambda##.

    First note that ##\nabla_{[a}\omega_{b]} = 0## if and only if ##\nabla_{a}\omega^{abc} = 0## where ##\omega^{abc} = \epsilon^{abcd}\omega_{d}## is the dual of the twist; inserting the expression for ##\omega_a## we find ##\omega^{abc} = -6\xi^{[a}\nabla^{b}\xi^{c]}## (see the formulas for ##\epsilon_{abcd}## in section B.2 of Wald, particularly page 433). This is easy to see as ##\nabla_{[a}\omega_{b]} = 0 \Rightarrow \epsilon^{efgh}\epsilon_{abgh}\nabla_{e}\omega_{f} = 0 \Rightarrow \epsilon_{abcd}\nabla_{e}(\xi^{[e}\nabla^{c}\xi^{d]}) = 0 \Rightarrow \nabla_{e}(\xi^{[e}\nabla^{a}\xi^{b]}) = \nabla_{e}\omega^{ebc} = 0##
    because ##\nabla^{[a}\xi^{b]} = \nabla^a \xi^b## on account of ##\xi^a## being a killing vector field. For the converse, ##\epsilon^{abcd}\nabla_{c}\omega_{d} = \epsilon^{dcba}\epsilon_{defg}\nabla_{c}(\xi^{e}\nabla^{f}\xi^{g}) = -6\nabla_{c}(\xi^{[c}\nabla^{b}\xi^{a]}) = \nabla_{c}\omega^{cba} = 0## thus ##\nabla_{[a}\omega_{b]} = 0##.

    Now on to the problem itself, if ##R^{a}{}{}_{b}\xi^b = \lambda \xi^{a}## then
    ##\nabla_a \omega^{abc} = -6\nabla_{a}(\xi^{[a}\nabla^{b}\xi^{c]} ) = -2(\xi^b \nabla_a \nabla^c \xi^a -\xi^c \nabla_a \nabla^b \xi^a + R^{cb}{}{}_{ad}\xi^{a}\xi^{d})\\ = -2(R^{c}{}{}_{d}\xi^{d}\xi^{b} - R^{b}{}{}_{d}\xi^{d}\xi^{c}) = -2(\lambda\xi^{c}\xi^{b} - \lambda \xi^{b}\xi^{c}) = 0.##

    It's the converse I'm stuck on mainly. If ##\nabla_{[a}\omega_{b]} = 0## then, using the above, ##R^{c}{}{}_{d}\xi^{d}\xi^{b} = R^{b}{}{}_{d}\xi^{d}\xi^{c}##. If ##\xi^a## is non-null (##\xi^a \xi_a \neq 0##), then ##R^{c}{}{}_{d}\xi^{d} = \frac{R_{bd}\xi^b\xi^{d}}{\xi^b \xi_b}\xi^{c} = \lambda \xi^c ## as desired. However I don't get what to do when ##\xi^a## is null; I don't see how to show the desired result.
     
  2. jcsd
  3. Aug 31, 2013 #2

    WannabeNewton

    User Avatar
    Science Advisor

    Ok if ##\xi^a## is a null killing vector field, then ##R_{ab}\xi^a \xi^b = 2\omega^2## where ##\omega^2## is the norm of the twist ##\omega_a##. If ##\xi^a## is an eigenvector of ##R_{ab}## then ##\omega^2 = 0## and since this is the twist, this implies ##\omega_a = 0##.

    So for a null killing vector field ##\xi^a##, either (1) ##\nabla_{[a}\omega_{b]} = 0## implies ##\omega_a = 0##, in which case ##\xi^a = \alpha\nabla^a \beta## hence ##\nabla^{a}\xi^{b} = \nabla^{[a}\xi^{b]} = \nabla^{[a}\alpha \nabla^{b]}\beta## thus ##R^{a}{}{}_b \xi^b = \nabla_b \nabla^a \xi^b = \nabla_b (\nabla^{[a}\alpha \nabla^{b]}\beta) = 0##,
    or (2) there exists a space-time with some null killing field ##\xi^a## such that ##\omega_a \neq 0## but ##\nabla_{[a}\omega_{b]} = 0## for ##\xi^a##, which would mean that the problem statement is incorrect as given and should specify that the killing field is non-null. Does anyone know if (1) is true or have an example of (2)?
     
    Last edited: Aug 31, 2013
  4. Sep 2, 2013 #3

    WannabeNewton

    User Avatar
    Science Advisor

    If anyone is interested, it just so happens that for any null killing field ##\xi^a##, ##\nabla_{[a}\omega_{b]} = 0## implies ##\omega_a = 0##. As noted in post #2, this then implies that ##\xi^a## is an eigenvector of ##R_{ab}##.

    To see this, first note that since ##\xi^a \xi_a = 0## we have ##\xi^a \nabla_b \xi_a = 0 = -\xi^a \nabla_a \xi_b##. Also, from the calculations in post #1 we have that ##\nabla_{[a}\omega_{b]} = 0\Rightarrow \xi^b \nabla_a \nabla^c \xi^a = \xi^c \nabla_a \nabla^b \xi^a ## hence ##\xi^b (\xi_c \nabla_a \nabla^c \xi^a) = 0## but ##\xi^a## is an arbitrary null killing field so it must be that ##\xi_c \nabla_a \nabla^c \xi^a = 0## thus ##\nabla_a \xi_b \nabla^a \xi^b = 0##.

    Now let ##\nu ^a## be an arbitrary vector field and consider ##(\omega _a \nu ^a)^2\\ = (\epsilon_{abcd}\nu^a \xi^b \nabla^c \xi^d)(\epsilon^{efgh}\nu_e \xi_f \nabla_g \xi_h)\\ = -4!(\nu^a \xi^b \nabla^c \xi^d )(\nu_{[a}\xi_{b}\nabla_{c}\xi_{d]})##
    Using ##\xi^a \xi_a = \xi^a \nabla_b \xi_a = \xi^a \nabla_a \xi_b = \nabla_a \xi_b \nabla^a \xi^b = 0##, it is easy to see that ##(\omega _a \nu ^a)^2 = 0## hence ##\omega_a = 0##.
     
  5. Sep 7, 2013 #4
    Is there a way to do it more directly, without having to introduce an additional arbitrary vector field?
     
  6. Sep 7, 2013 #5

    WannabeNewton

    User Avatar
    Science Advisor

    Uh well the argument would be extremely similar. First note that ##\omega_a## is null, ##\omega^a \omega_a = \epsilon^{abcd}\epsilon_{aefg}(\xi_b \nabla_c \xi_d )(\xi^e \nabla^f \xi^g)\\ = -6(\xi_b \nabla_c \xi_d )(\xi^{[b} \nabla^c \xi^{d]} )\\ = -2\{(\xi_b \xi^b) \nabla_c \xi_d \nabla^c \xi^d - (\xi_b \nabla^b \xi^d )\xi^c \nabla_c \xi_d + (\xi_b \nabla^b \xi^c )\xi^d \nabla_c \xi_d\} = 0##

    Also note that ##\xi^a \omega_a = \epsilon_{[ab]cd}\xi^{(a}\xi^{b)}\nabla^c \xi^d = 0 ##. Hence ##\omega^a = \alpha \xi^a##, where ##\alpha## is a scalar field, because two orthogonal null vector fields must be parallel. Now ##\nabla_b \omega_{c} = \xi_c \nabla_b \alpha + \alpha \nabla_b \xi_c ## therefore ##\xi_{[a}\nabla_b \omega_{c]} = \xi_{[a}\xi_c \nabla_{b]} \alpha + \alpha \xi_{[a}\nabla_b \xi_{c]} ##. But ##\xi_{[a}\xi_{c]} = 0## so we are left with ##\xi_{[a}\nabla_b \omega_{c]} = \alpha \xi_{[a}\nabla_b \xi_{c]} ##.

    Thus if ##\nabla_{[a}\omega_{b]} = 0## then ##\alpha \xi_{[a}\nabla_b \xi_{c]} = 0## which implies ##\alpha = 0##, directly yielding ##\omega^a = 0##, or ##\xi_{[a}\nabla_b \xi_{c]} = 0## implying ##\epsilon_{eabc}\omega^{e} \propto\xi_{[a}\nabla_b \xi_{c]} = 0## hence ##\omega^{d}\propto \epsilon^{dabc}\epsilon_{eabc}\omega^{e} = 0##.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Killing fields as eigenvectors of Ricci tensor
  1. Ricci Tensor (Replies: 5)

  2. Ricci tensor equation (Replies: 1)

  3. Ricci tensor (Replies: 3)

Loading...