Killing vectors in space with torsion?

salparadise
Messages
22
Reaction score
0
Hello,

I was wondering whether it is possible or not to define Killing vectors in a manifold with torsion. As a first approach I was reasoning like:

Taking as definition of killing vectors, a vector field that: any set of points when displaced along a Killing integral lines, by equal amounts will have the distances between the points kept unchanged. This implies that the metric is unchanged along the Killing directions.

In a space endowed with torsion, I think it is perfectly possible to define vector fields that leave the metric unchanged. But I'm not so sure these vectors can be used to displace points in the sense previously explained, with distances kept constant. Even though the metric is kept unchanged I'm wandering whether the existence of torsion might change distances between points.

If the entire manifold is displaced along vectors of previous paragraph, the new manifold cannot be considered as an isometrie, because altough metric field is invariant the torsion field in general will not be, since no special condition on it is imposed by definition Killing vectors. Or is this wrong?


Thanks advance,
 
Physics news on Phys.org
The entire concept of torsion is associated with affine connections while the concept of a Killing field is related to the Lie derivative of the metric. Those two concepts are not directly related. You can have a Killing field without even defining an affine connection and it is perfectly possible to define a Killing field in the presence of a connection with non-zero torsion.

There is another issue with the metric and affine connections, which is whether or not the connection is metric compatible. If it is then parallel transport will preserve lengths and angles between the parallel transported vectors. It is also perfectly possible to have a metric compatible connection with non-zero torsion. However, there is only one torsion free connection that is metric compatible - the Levi-Civita connection.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
9
Views
2K
Replies
32
Views
2K
Replies
38
Views
6K
Replies
7
Views
1K
Replies
16
Views
3K
Replies
12
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K
Back
Top