Kinematics and One Dimensional Motion

Click For Summary
The discussion centers on whether deceleration can be assumed to be the same in different instances of one-dimensional motion. It explores the idea that the acceleration of a car during braking might be independent of its speed. A participant concludes that they have resolved their query, stating the answer is D/9. The conversation reflects a focus on the principles of kinematics and the implications of speed on deceleration. Overall, the thread emphasizes understanding the relationship between speed and braking in one-dimensional motion scenarios.
ayans2495
Messages
58
Reaction score
2
Homework Statement
A car is travelling at 120 km/h, when the driver sees a herd of cows on the road ahead and slams on the brakes. The performance of the car’s brakes is such that the car comes to a stop in a distance D meters. Assuming that the acceleration of the car under braking is independent of the car’s speed, what distance would the car require to come to a stop if it were travelling at 40 km/h instead?
Relevant Equations
v=d/t, x=ut+1/2at^2
Would we assume that the deceleration of both instance are the same?
 
Physics news on Phys.org
ayans2495 said:
Would we assume that the deceleration of both instance are the same?
I think that's what the question is trying to say, by
Assuming that the acceleration of the car under braking is independent of the car’s speed,
 
hmmm27 said:
I think that's what the question is trying to say, by
Don't worry, I've figured it out. It's D/9. Thank you though.
 
ayans2495 said:
Don't worry, I've figured it out. It's D/9. Thank you though.
Not going to ; cheers.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
3
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
Replies
8
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K