Kirchoff's laws, emf and internal resistance

Click For Summary
SUMMARY

The discussion centers on calculating the electromotive force (emf) and internal resistance of two identical cells connected in series and parallel with a 7-ohm resistor. The equations derived from the series circuit (2(E - 0.333r) = 0.333 x 7) and the parallel circuit (E - 0.1875r = 0.375 x 7) suggest that the book's answers of E = 1.5V and r = 1Ω are incorrect. Participants concluded that the correct values are E = 4.5V and r = 10Ω based on their calculations, indicating a potential error in the textbook.

PREREQUISITES
  • Understanding of Kirchhoff's laws
  • Familiarity with Ohm's law
  • Basic knowledge of series and parallel circuits
  • Ability to solve simultaneous equations
NEXT STEPS
  • Review Kirchhoff's voltage and current laws for circuit analysis
  • Practice solving circuit problems involving series and parallel configurations
  • Explore the implications of internal resistance in real batteries
  • Investigate common errors in textbook solutions for circuit problems
USEFUL FOR

Students studying electrical engineering, educators teaching circuit analysis, and anyone involved in troubleshooting circuit problems or verifying textbook solutions.

alexburns1991
Messages
10
Reaction score
0

Homework Statement



two identical cells of emf E and internal resistance r are connected in series.
a 7 ohm resistor is connected across the combination and draws a current of 0.333A.
the two cells are now connected in parallel; the 7 ohm resistor now draws a current of 0.375A from the combination.

calculate the emf and internal resistance of the cells.

Homework Equations



E - Ir = IR

Sum of potential differences in a closed loop = 0
Current entering a junction = current leaving a junction

The Attempt at a Solution



i managed to get one equation from the series circuit:
2(E - 0.333r) = 0.333 x 7

and an equation for the parallel circuit:
E - 0.1875r = 0.375 x 7

but this didn't give the correct answers from the book, which says that E = 1.5 and r = 1
 
Physics news on Phys.org
alexburns1991 said:

Homework Statement



two identical cells of emf E and internal resistance r are connected in series.
a 7 ohm resistor is connected across the combination and draws a current of 0.333A.
the two cells are now connected in parallel; the 7 ohm resistor now draws a current of 0.375A from the combination.

calculate the emf and internal resistance of the cells.

Homework Equations



E - Ir = IR

Sum of potential differences in a closed loop = 0
Current entering a junction = current leaving a junction

The Attempt at a Solution



i managed to get one equation from the series circuit:
2(E - 0.333r) = 0.333 x 7

and an equation for the parallel circuit:
E - 0.1875r = 0.375 x 7

but this didn't give the correct answers from the book, which says that E = 1.5 and r = 1

Welcome to the PF. Good job showing your work -- that makes it a lot easier.

I don't see how the solution of E = 1.5V can be correct. The 0.333A through the 7 Ohm resistor gives a voltage of 2.33V, so connecting two 1.5V batteries in parallel can't get you up there... Any chance of a typo or misunderstanding in the problem? Your equations look correct to me.
 
im a bit suspicious of the answers in the book, theyve been wrong before!
but i don't want to assume that its always the book that's wrong, so maybe I've missed something?

the equations i got give E = 4.5V and r = 10 ohms, which i think seems too high.
 
alexburns1991 said:
im a bit suspicious of the answers in the book, theyve been wrong before!
but i don't want to assume that its always the book that's wrong, so maybe I've missed something?

the equations i got give E = 4.5V and r = 10 ohms, which i think seems too high.

That's the same numbers that I got with your two equations (which I think are correct equations for the described problem). Either set of numbers (book's or ours) work for the first equation, but only ours fit the 2nd equation. What would be the current for the 2nd case (parallel batteries) to give the book's answers?
 
alexburns1991 said:

The Attempt at a Solution



i managed to get one equation from the series circuit:
2(E - 0.333r) = 0.333 x 7

and an equation for the parallel circuit:
E - 0.1875r = 0.375 x 7

but this didn't give the correct answers from the book, which says that E = 1.5 and r = 1

I agree with the two equations you set up. In fact, the result of the parallel circuit implies an EMF of more than 0.375*7=2.625V, so the 1.5V answer has to be wrong.

EDIT: berkeman beat me.
 
you can get the answers in the book by taking the currents in the parallel equation as being the same, both 0.1875- which gives r = 1, but i don't see why this would be the case at all. surely taking one complete loop and applying kirchhoff's rule, the current through each of the cells would be half that through the resistor?
 
alexburns1991 said:
you can get the answers in the book by taking the currents in the parallel equation as being the same, both 0.1875- which gives r = 1, but i don't see why this would be the case at all. surely taking one complete loop and applying kirchhoff's rule, the current through each of the cells would be half that through the resistor?
Yes, each cell generates 1/2 of the total resistor current.

Berkeman was saying that the parallel current of 0.375A (0.1875A through each cell) is inconsistant with the book answers of 1.5V, 1Ω per cell. So, what would the total current in the parallel circuit have to be if each cell has 1.5V and r=1Ω, and they are connected in parallel to a 7Ω resistor?
 
i worked it out to be 0.2A.

ive just posted another question on this, where my answer disagrees with the answer in the book. i think the solution should be to get a new book!
 
Looks right. So the mistake in the book is either with the final answer, or that they gave the wrong current for the parallel circuit case.

Getting a different book is an option if you are doing self-study.
 
  • #10
alexburns1991 said:
i think the solution should be to get a new book!

:smile: Classic!
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K