Graduate Klein paradox in the massless case

Click For Summary
The discussion centers on the Klein paradox in the massless case, specifically regarding a potential step of height V0. The inquiry focuses on the limit where the energy E0 equals V0, leading to a constant wave function after the step and resulting in the Dirac equation yielding trivial conditions for the spinor components. The poster explores the implications of choosing different values for the spinor components, noting that both choices lead to total transmission (T=1) or total reflection (R=1). They conclude that, by continuity of T(E), the most reasonable outcome is T=1, suggesting that in real-life scenarios, an electron encountering this potential barrier would still pass through. The discussion emphasizes the paradoxical nature of the situation while asserting that T remains consistently equal to 1.
Paul159
Messages
15
Reaction score
4
I have a question about the Klein paradox in the massless case, for a potential step of height ##V_0## (this is exactly the situation described by Wikipedia). I don't have a problem to understand the "paradox", and I think the Wikipedia's illustration is quite telling.
My question is : what append at the limit case ##E_0 = V_0## ? The "wave function" after the step is constant (##k=0##), and the Dirac equation for the spinor's components ##\Psi_1##, ##\Psi_2## become ##0 = 0##... Thus there are no conditions for the value of those components. If I choose ##\Psi_1 = \Psi_2 = 1## for example, I still get ##T=1##. If I choose ##\Psi_1 = -\Psi_2 = 1##, I get ##R=1##. I "understand" this with the fact that at the node the group velocity is not defined.
So what would really happen in real life ?

400px-Dispersion1.png
 
Physics news on Phys.org
Edit : By continuity of ##T(E)## I would say that the good answer is ##T=1##. Also if I end the step potential (I take a potential barrier), the electron coming from the left has to pass the barrier, as it can't change its group velocity. So for me ##T## is always ##1##, even in the pathological case ##E=V_0##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K