Langevin to Fokker-planck? Uh oh

  • Thread starter Thread starter JVanUW
  • Start date Start date
AI Thread Summary
The discussion centers on converting the Langevin equation into a Fokker-Planck equation, highlighting the complexities involved in the transformation. The Langevin equation provided is linked to a potential function, and the participant expresses difficulty in solving the resulting equation in closed form. Key distinctions between the Langevin and Fokker-Planck equations include their differing timescales and perspectives on modeling fluctuations. References to relevant literature, such as Brenner and Edwards' work, are mentioned to support the discussion on probability density evolution and diffusivity. The topic remains an area of active research, particularly regarding the application of different statistical distributions.
JVanUW
Messages
23
Reaction score
0
This isn't homework but I'm interested.
So I have the langevin equation dy/dt = -dV/dy +η(t)

where V(y) = -by^3/3 + ζy

how can I turn this into a fokker-planck equation?

What I'm getting is

x' = -u(bx^2+ζ) + η(t)

Which I don't know how to solve in closed form.

Any ideas/suggestions?

Thanks!
 
Last edited:
Physics news on Phys.org
Yikes... I have some information, but it's not clear how to relate the specific to your question. I have the Langevin equation as m dv/dt = F + f, where f is the randomly fluctuating force. The Fokker-Planck equation is based on the continuity equation and is too messy to write here, but is a time evolution of a probability density. The long-time limit is known as the Smoluchowski equation.

The two equations (Langevin vs. Fokker-Planck/Smoluchowski) differ in a few respects- primarily the relevant timescale, but also the difference in viewing a process as 'diffusive' or as direct modeling of fluctuations in particle velocity.

My reference for this is Brenner and Edwards, "Macrotransport Processes". They begin by defining a timescale that allows for an average velocity, but short enough to allow for fluctuations. This leads to an integral expression for the probability density, and after a few short (but very dense) pages, they show the two approaches yield identical expressions for the diffusivity.

They reference Masters, "Time-scale separations and the validity of the Smoluchowski, Fokker-Planck and Langevin equations as applied to concentrated particle suspensions" Mol. Phys. 57, 303-317 (1986). There may also be some useful material in Balescu's "Statistical Dynamics: Matter out of Equilibrium"- it seems to be an open area of research (by considering Levy distributions instead of Gaussian distributions, for example)
 
I'll check it out thanks!
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Thread 'Recovering Hamilton's Equations from Poisson brackets'
The issue : Let me start by copying and pasting the relevant passage from the text, thanks to modern day methods of computing. The trouble is, in equation (4.79), it completely ignores the partial derivative of ##q_i## with respect to time, i.e. it puts ##\partial q_i/\partial t=0##. But ##q_i## is a dynamical variable of ##t##, or ##q_i(t)##. In the derivation of Hamilton's equations from the Hamiltonian, viz. ##H = p_i \dot q_i-L##, nowhere did we assume that ##\partial q_i/\partial...
Back
Top