A_B
- 87
- 1
Homework Statement
show that the Laplace transform of e^(At) = (sI - A)^(-1)
<br /> \mathcal{L}\left\{ e^{At} \right\}(s) = \left(sI - A \right)^{-1}<br />
The Attempt at a Solution
I find
<br /> \left( e^{At} \right)_{ij} = \sum_{k=0}^{\infty} \frac{(A^k)_{ij}t^k}{k!}<br />
and since
<br /> \mathcal{L}\left\{ (A^k)_{ij}t^k \right\}(s) = \frac{k!}{s^{k+1}} (A^k)_{ij}<br />
we have
<br /> \mathcal{L}\left\{\left( e^{At} \right)_{ij}\right\}(s) = \sum_{k=0}^{\infty} \frac{(A^k)_{ij}}{s^{k+1}}<br />
and there I'm stuck.
Thanks
A_B
Last edited: