Laplace transform of cosine squared function

Click For Summary
The discussion focuses on finding the Laplace transform of the cosine squared function using the convolution property. The initial attempt involves convoluting the Laplace transforms of cosine functions, but this approach is incorrect. A participant points out that the convolution method is not applicable in this case and suggests using trigonometric identities instead. The correct solution involves applying these identities to simplify the process. The conversation emphasizes the importance of using the appropriate mathematical techniques for accurate results.
member 731016
Homework Statement
Please see below
Relevant Equations
##L[(\cos^2 (2t)] = L[\cos 2t] * L[\cos 2t]##
For part (b),
1713581521839.png

I have tried finding the Laplace transform of via the convolution property of Laplace transform.

My working is,

##L[\cos^2 (2t)] = L[\cos 2t] * L[\cos 2t]##
##L[\cos^2 (2t)] = \frac{s}{s^2 + 4} * \frac{s}{s^2 + 4}##
##\int_0^t \frac{s^2}{(s^2 + 4)^2} dt = \frac{ts^2}{(s^2 + 4)^2}##

However, I don't see how that is equivalent/equal to the expression they got for (b). Does some please know how or if I've made a mistake?

Thanks!
 
Physics news on Phys.org
Your working is wrong. You are trying to make a convolution, but that is not how it is done. Please look up the actual expression for a convolution.

Nb: the easiest way to solve this is using trig identities as done in the solution.
 
  • Love
Likes member 731016
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...