Length of Curve $y^2=4(x+4)^3$: 13.5429

  • Context: MHB 
  • Thread starter Thread starter ineedhelpnow
  • Start date Start date
  • Tags Tags
    Curves Length
Click For Summary
SUMMARY

The discussion centers on calculating the length of the curve defined by the equation $y^2=4(x+4)^3$ over the interval $0 \le x \le 2$. The correct expression for the curve is derived as $y=2(x+4)^{3/2}$, with the derivative $y'=3(x+4)^{1/2}$. The integral setup for the length calculation is confirmed as $\int_{0}^{2} \sqrt{1+9(x+4)}\,dx$, which evaluates to approximately 13.5429. Further steps are provided to derive an exact answer using substitution in the integral.

PREREQUISITES
  • Understanding of calculus concepts, specifically integration and derivatives.
  • Familiarity with parametric equations and curve length calculations.
  • Knowledge of substitution methods in integrals.
  • Ability to manipulate algebraic expressions involving square roots.
NEXT STEPS
  • Study the derivation of arc length formulas in calculus.
  • Learn about integration techniques, particularly substitution and integration by parts.
  • Explore the properties of parametric equations and their applications in curve analysis.
  • Practice solving integrals involving square roots and polynomial expressions.
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, curve analysis, and integral calculus. This discussion is beneficial for anyone looking to deepen their understanding of curve length calculations and integral techniques.

ineedhelpnow
Messages
649
Reaction score
0
$y^2=4(x+4)^3$
$0 \le x \le 2$

$y=2(x+4)^{3/2}$

$y'=3(x+4)^{1/2}$

$\int_{0}^{2} \ \sqrt{1+9(x+4)},dx = 13.5429$

is that right?
 
Physics news on Phys.org
wait, no one respond yet. i wrote the question down wrong. i have to back and redo it.

actually that is the right question. did i do it right?
 
Last edited:
ineedhelpnow said:
$y^2=4(x+4)^3$
$0 \le x \le 2$

$y=2(x+4)^{3/2}$

$y'=3(x+4)^{1/2}$

$\int_{0}^{2} \ \sqrt{1+9(x+4)}\,dx = 13.5429$

is that right?

What you wrote is all correct (assuming $y\ge 0$).

What has your final integral got to do with what came before it?
 
$\int_{a}^{b} \ \sqrt{1+[f'(x)]^2},dx$

the steps i showed was solving for my y' and then i squared it and plugged it in.
 
ineedhelpnow said:
$y^2=4(x+4)^3$
$0 \le x \le 2$

$y=2(x+4)^{3/2}$

$y'=3(x+4)^{1/2}$

$\int_{0}^{2} \ \sqrt{1+9(x+4)},dx = 13.5429$

is that right?

Your setup of the integral is correct. You can probably get an exact answer though.

$\displaystyle \begin{align*} \int_0^2{ \sqrt{ 1 + 9 \left( x + 4 \right) } \,\mathrm{d}x } &= \int_0^2{ \sqrt{ 1 + 9x + 36 }\,\mathrm{d}x } \\ &= \int_0^2{ \sqrt{ 9x + 37 } \, \mathrm{d}x } \\ &= \frac{1}{9} \int_0^2{ 9\,\sqrt{ 9x + 37 } \, \mathrm{d}x } \end{align*}$

and now make the substitution $\displaystyle \begin{align*} u = 9x + 37 \implies \mathrm{d}u = 9\,\mathrm{d}x \end{align*}$ and noting that $\displaystyle \begin{align*} u(0) = 37 \end{align*}$ and $\displaystyle \begin{align*} u(2) = 55 \end{align*}$, the integral becomes

$\displaystyle \begin{align*} \frac{1}{9} \int_0^2{ 9\,\sqrt{ 9x + 37} \, \mathrm{d}x } &= \frac{1}{9} \int_{37}^{55}{ \sqrt{u}\,\mathrm{d}u } \\ &= \frac{1}{9} \int_{37}^{55}{ u^{\frac{1}{2}}\,\mathrm{d}u } \\ &= \frac{1}{9} \left[ \frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right] _{37}^{55} \\ &= \frac{1}{9} \left[ \frac{2}{3} u\,\sqrt{u} \right] _{37}^{55} \\ &= \frac{2}{27} \left( 55\,\sqrt{55} - 37\,\sqrt{37} \right) \end{align*}$
 
thats what i got but i just posted the decimal form because it was easier. thanks for working it out though :)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K