Let function ƒ be Differentiable

Click For Summary
The discussion focuses on the properties of a differentiable function ƒ and its implications for the function g(x) = f(x) - x²/2. It establishes that g is differentiable over the interval [0,1] and explores the behavior of its derivative g'(x) within specific bounds. The key point is the application of the Intermediate Value Theorem, which can be used even if f' is not continuous, due to Darboux's theorem. This theorem asserts that the derivative of a differentiable function, while possibly discontinuous, still satisfies the intermediate value property. The conversation highlights the nuances of differentiability and continuity in calculus.
sergey_le
Messages
77
Reaction score
15
Homework Statement
Let function ƒ be Differentiable in the interval [0,1] so that 0≤f'(x)≤1 for all x in the interval [0,1].
Prove that there is a point x in [0,1] so that f'(x)=x.
Relevant Equations
Intermediate value theorem
What I've tried is:
I have defined a function g(x)=f(x)-x^2/2. g Differentiable in the interval [0,1] As a difference of function in the interval.
so -x≤g'(x)≤1-x for all x∈[0,1] than -1≤g'(x)≤0 or 0≤g'(x)≤1 .
Then use the Intermediate value theorem .
The problem is I am not given that f' is continuous
 
  • Like
Likes vanhees71 and member 587159
Physics news on Phys.org
Interesting problem. First, it looks like you need continuity to apply the intermediate value theorem, but in fact you don't. Here you know that ##f## is differentiable, so ##f'## is still 'sufficiently nice', in the following sense:

##f'## may be discontinuous, but it still satisfies the intermediate value theorem. This is known as Darboux's theorem. See https://en.wikipedia.org/wiki/Darboux's_theorem_(analysis) for two short elementary proofs.
 
Last edited by a moderator:
  • Like
Likes sergey_le and vanhees71
Math_QED said:
Interesting problem. First, it looks like you need continuity to apply the intermediate value theorem, but in fact you don't. Here you know that ##f## is differentiable, so ##f'## is still 'sufficiently nice', in the following sense:

##f'## may be discontinuous, but it still satisfies the intermediate value theorem. This is known as Darboux's theorem. See https://en.wikipedia.org/wiki/Darboux's_theorem_(analysis) for two short elementary proofs.
Thanks
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
26
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K