Let X be uniformly distributed on (0,1)

  • Thread starter Thread starter TomJerry
  • Start date Start date
  • Tags Tags
    Distributed
TomJerry
Messages
49
Reaction score
0
Question:
Let X be uniformly distributed on (0,1). Show that Y=- \lambda-1 1n(1-X) has an exponential distribution with parameter \lambda>0
 
Physics news on Phys.org
Do you know what generating functions are?
 
let

<br /> F_Y(y) = P(Y \le y)<br />

and use the definition of Y to rewrite the inequality in terms of X.
 
chiro said:
Do you know what generating functions are?

Nope !
 
Here is how you can do this with a moment generating function.

Basically you can prove that a distribution is a particular one if both moment generating functions are of the same type.

So for example you've given Y = - 1/(lambda) ln(1 - X).

We are given that X is uniform on (0,1) so basically standard uniform.

The PDF of X is simply 1 with the domain (0,1).

The MGF of Y is given by M(t) = E[e^(Yt)] = Integral [0,1] 1 x e^(-{1/lambda} x ln{1-x} x t) dx = Integral [0,1] (1-x)^(-t/{lambda})

Using a substitution we get u = 1 - x, du = -dx which gives us the integral

M(t) = Integral [0,1] u^(-t/{lambda}) du.

This gives us M(t) = 1/{-t/lambda + 1} which corresponds to the MGF of the exponential distribution.
 
You can also use the standard formula for computing the density of a strictly increasing function. If X has density f_X(x) and Y=g(X) is strictly increasing, then Y has density f_Y(y)=f_X(g^-1(y))*dg^-1(y)/dy
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top