Undergrad LIGO: Detecting Differences Less Than a Proton Length - How is It Possible?

Click For Summary
The LIGO detector achieves remarkable sensitivity by measuring relative changes in the lengths of its perpendicular arms, rather than absolute positions, which simplifies the detection of gravitational waves. It employs highly precise mirror mounts, operates in a vacuum, and uses stable lasers to minimize environmental interference. Extensive post-processing of signals helps correct for vibrations and noise, allowing it to detect changes smaller than the length of a proton. The system is designed to maintain alignment near the dark fringe of interference patterns, enhancing sensitivity to minute changes. Overall, LIGO's design and technology enable it to detect gravitational waves from cosmic events like merging neutron stars and black holes.
thegroundhog
Messages
16
Reaction score
10
TL;DR
How is the LIGO detector able to be so accurate?
I read that the LIGO detector in the US was able to detect a difference of less that the length of a proton, or maybe even less than this. How is this possible? The perpendicular arms won't be the same length down to the nearest proton length. Also, at such small lengths the microclimate on each arm might be enough to shift the apparatus 1000x more than a proton length. What about minor tremors and other meteorological phenomena? I would love to know the exact detail of how it is able to be so accurate.
 
  • Like
Likes Demystifier and Dale
Physics news on Phys.org
Try this video. Veritasium answers your question with a very good explanation.

 
  • Like
Likes Demystifier and thegroundhog
Well, it took them many years to get to that level of sensitivity so it is presumably not easy...
The LIGO collaboration has published a large number of technical papers describing their setups (I have read some of them since I've used some related signal processing techniques). There are also a large number of popular articles. Have a look at the LIGO website.

Anyway, one of the key points here is they are detecting a difference between two signals/path. This is much, much easier than e.g. measuring the absolute position of two objects. That is, you don';t need to know WHERE the protons are in order to detect a relative change in position.
 
  • Like
Likes thegroundhog
Very precise mirror mounts that are extremely well isolated from their surroundings, mounted in extremely high vacuum, illuminated with extremely stable lasers, and surrounded by lots of sensors to detect uncontrolled vibration, and with extensive post processing of the signals to correct for that, is my understanding.
 
  • Like
Likes thegroundhog and Motore
LIGO and Virgo look for gravitational waves in the range of ~50-1000 Hz, optimal for merging neutron stars and stellar mass black holes. Motion that has a much lower frequency is not disturbing the measurement unless it's excessive. A multi-step pendulum suspension dampens motion in the sensitive range. They keep the interference near the dark fringe because that leads to larger relative changes in brightness from small changes in length difference. Sometimes noise is so large that they lose that alignment, during that time that individual detector cannot take data.
 
  • Informative
  • Like
Likes berkeman and Ibix
So basically, the change of interferometer arm length by a tiny fraction of laser wavelength transforms into a tiny fraction of laser light power compared to laser source power. By taking the source power big enough, even this tiny fraction of power becomes detectable.
 
Thread 'What is the pressure of trapped air inside this tube?'
As you can see from the picture, i have an uneven U-shaped tube, sealed at the short end. I fill the tube with water and i seal it. So the short side is filled with water and the long side ends up containg water and trapped air. Now the tube is sealed on both sides and i turn it in such a way that the traped air moves at the short side. Are my claims about pressure in senarios A & B correct? What is the pressure for all points in senario C? (My question is basically coming from watching...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
10
Views
3K
Replies
2
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
7K