PeterDonis said:
I don't think this is correct. I haven't been following all the details of your exchange with pervect, but a couple of items should be noted:
(1) The "transverse-traceless" approach only applies in a small patch of spacetime in which the gravitational wave can be idealized as a purely transverse plane wave. It certainly can't be applied in a global coordinate chart that includes an entire sphere at some distance from the source.
I think the local conditions can be iterated around the equator and perhaps over the whole surface again creating the global view by overlapping small regions but it is certainly a point where I have an ongoing concern. However, any problems are significantly smaller than in the alternative.
PeterDonis said:
(2) If you are trying to visualize the whole gravitational wave in a global coordinate chart that includes an entire sphere at some distance from the source, you cannot simply assume that the entire wave front is just a sphere (or annulus) to which the transverse plane wave in a small patch, described in #1 above, is a local approximation. In other words, you cannot assume that the wave amplitude at a given radius from the source, at a given time in a chart in which the source is at rest, is the same at all angular coordinates around a sphere at that radius. (I'm not positive that you can even assume this everywhere on a circle of a given radius in the source's orbital plane.)
I totally agree, as you go round the circle, the phase of the GW changes and remember the GW has half the period of the binary orbit. I've attached the diagram I included some time ago which shows how two cycles fit round the "equator".
Based on what has been said, what I am suggesting is that we should not think of test particles "moving together then apart" but instead staying static with an equivalent variation of the speed of light causing the variation in the interferometer output.
The thought experiment that helped me on this is to imagine a variant of the RingWorld concept.
Usually that is shown with living space on the inner surface, which presupposes rotation to create artificial gravity through "centrifugal force". Instead, think of a non-rotating RingWorld with suspended test masses hanging towards the star by suspensions that leave them free to move in the direction along the ring, then make the star a hard binary. How do the masses move relative to the material of RingWorld if that is nearly rigid (as close as GR allows)?
Sorry, I just drew that image by hand so it's a bit rough but I'm sure you'll get the idea.
To avoid the complexity of the material behaviour, think of three sets of test masses half a GW wavelength apart in radius and ignore the RingWorld material. Do the middle set of masses move relative to the top and bottom sets (which must act in unison). The Ringworld material is shown at the top this time in cross section with three test masses, one from each set.
A little thought should show that either the middle ring moves in opposition to the outer two with equal magnitude or none move at all.
Do you have a metric that can describe this setup?