PeterDonis
Mentor
- 49,551
- 25,675
GeorgeDishman said:the answer to (a) must be "no", all the test masses must be motionless.
I don't think this is correct. I haven't been following all the details of your exchange with pervect, but a couple of items should be noted:
(1) The "transverse-traceless" approach only applies in a small patch of spacetime in which the gravitational wave can be idealized as a purely transverse plane wave. It certainly can't be applied in a global coordinate chart that includes an entire sphere at some distance from the source.
(2) If you are trying to visualize the whole gravitational wave in a global coordinate chart that includes an entire sphere at some distance from the source, you cannot simply assume that the entire wave front is just a sphere (or annulus) to which the transverse plane wave in a small patch, described in #1 above, is a local approximation. In other words, you cannot assume that the wave amplitude at a given radius from the source, at a given time in a chart in which the source is at rest, is the same at all angular coordinates around a sphere at that radius. (I'm not positive that you can even assume this everywhere on a circle of a given radius in the source's orbital plane.)