Likelihood Function - Exponential Distribution

Merka
Messages
2
Reaction score
0

Homework Statement


X is exponentially distributed. 3 observations are made by an instrument that reports x1=5, x2=3, but x3 is too large for the instrument to measure and it reports only that x3 > 20 . (The largest value the instrument can measure is 10)

a)What is the likelihood function?
b)What is the mle of t?


Homework Equations


f(x;t)=t*exp(-t*x), E(X)=1/t ,
F(x) = P(X<=x)=1-exp(-t*x)

The Attempt at a Solution


a)(t^3)*exp(-3t*(avg of X))
b) take natural log of a), take derivative, then set equal to 0 and solve for t

Wondering if I am on the right track?
Thanks
 
Physics news on Phys.org
I've answered your other topic.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top