##\lim_{x \to0} \left(\dfrac{1}{\sin^2 x}-\dfrac{1}{x^2}\right)##

Click For Summary
SUMMARY

The limit as x approaches 0 of the expression (1/sin²x - 1/x²) is definitively calculated to be 1/3. This conclusion is reached through multiple methods, including the application of L'Hôpital's rule and the Taylor series expansion of sin x. The discussion highlights that the limit can be expressed as a combination of limits involving sin x and cos x, ultimately confirming that the limit is finite and equals 1/3.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with L'Hôpital's rule
  • Knowledge of Taylor series expansions
  • Basic trigonometric identities and functions
NEXT STEPS
  • Study the application of L'Hôpital's rule in various limit problems
  • Explore Taylor series for common functions, particularly trigonometric functions
  • Learn about the behavior of sin x and cos x near zero
  • Investigate alternative methods for evaluating limits, such as using series expansions
USEFUL FOR

Students and professionals in mathematics, particularly those focused on calculus, limit evaluation, and trigonometric functions.

littlemathquark
Messages
204
Reaction score
26
Homework Statement
Find ##\lim_{x \to0} \left(\dfrac{1}{\sin^2 x}-\dfrac{1}{x^2}\right)##
Relevant Equations
##\lim_{x \to0} \left(\dfrac{1}{\sin^2 x}-\dfrac{1}{x^2}\right)##
My solution is:

Let ##\lim_{ x \to 0}\left(\dfrac {1}{\sin^2x}-\dfrac1{x^2}\right)=L##

Let ##x=2y##

##\lim_{ y \to 0}\left(\dfrac {1}{\sin^22y}-\dfrac1{4y^2}\right)=\lim_{ y \to 0}\left(\dfrac1{4\sin^2y\cdot\cos^2y}-\dfrac1{4y^2}\right)=L##

##=\dfrac14\lim_{ y \to 0}\left(\dfrac1{\cos^2{y}}+\dfrac1{\sin^2{y}}-\dfrac1{y^2}\right)=\dfrac14+\dfrac{L}{4}=L##

##L=\dfrac13##

But I think I must show that firstly this limit L is a infinity number but I don't know how. Please help.
 
Physics news on Phys.org
You've shown that if the limit is finite, then it is ##1/3##. It looks tricky to prove that the limit is finite.

You could use l'Hopital's rule several times. Although perhaps there is something better than that.
 
My second solution using L'Hopital rule twice.
##\lim_{x \to0} \left(\dfrac{1}{\sin^2 x}-\dfrac{1}{x^2}\right)=\lim_{x \to0}\dfrac{x(x-\sin x)(x+\sin x)}{x^3\sin^2x}##

##\lim_{x \to0}\left(\dfrac{x}{\sin x}\right)\cdot\lim_{x \to0}\dfrac{x+\sin x}{\sin x}\cdot\lim_{x \to0}\dfrac{1-\cos x}{3x^2}##

##=1.\lim_{x \to0}\dfrac{1+\cos x}{\cos x}\cdot\lim_{x \to0}\dfrac{1-\cos x}{3x^2}=1.2.\lim_{x \to0}\dfrac{\sin x}{6x}=\dfrac 13##
 
  • Like
Likes   Reactions: PeroK
The clue was to look at the Taylor series for ##\sin x##:
$$\sin x = x - \frac{x^3}{6} + \dots$$Hence:$$x - \sin x = \frac{x^3}{6} + \dots$$And:
$$\lim_{x \to 0} \frac{x - \sin x}{x^3} = \frac 1 6$$Which you can confirm formally using L'Hopital.
 
For sufficiently small x^2,
\begin{split}<br /> \frac{1}{\sin^2 x} - \frac 1{x^2} &amp;= (\sin x)^{-2} - \frac{1}{x^2} \\<br /> &amp;= \frac{1}{x^2} \left(1 - \frac{x^2}{6} + O(x^4)\right)^{-2} - \frac{1}{x^2} \\<br /> &amp;= \frac{1}{x^2} \left( 1 + \frac{x^2}{3} + O(x^4)\right) - \frac{1}{x^2} \\<br /> &amp;= \frac{1}{3} + O(x^2) \end{split}
 
  • Like
Likes   Reactions: nuuskur and SammyS
Another method is to set f(x) = (\sin x)/x with f(0) = 1. Then <br /> \frac{1}{\sin^2 x} - \frac{1}{x^2} = \frac{1}{x^2f^2} - \frac1{x^2} = \frac{1}{f^2} \frac{1 - f^2}{x^2} and <br /> f(x) = 1 - \frac{x^2}{6} + \dots \Rightarrow 1 - f^2(x) = \frac{x^2}{3} + \dots
 

Similar threads

Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
931
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
976
  • · Replies 15 ·
Replies
15
Views
2K