Proving Continuity of a Piecewise Function at x=1

Click For Summary
The discussion centers on the continuity of the piecewise function f(x) at x=1, defined as 2(2e-e^x) for x<1 and 3πx-4 for x≥1. Evaluating the function at x=1 yields 2e and 3π-4, which initially appear close but are not equal. Participants emphasize that e and π are algebraically independent, making it impossible for the two values to be equal. Calculations reveal that 2e and 3π-4 differ significantly when evaluated to more decimal places. The conclusion is that the function is not continuous at x=1.
chaoseverlasting
Messages
1,050
Reaction score
3

Homework Statement


f(x) is a piecewise function defined as:

2(2e-e^x) x&lt;1
3\pi x-4 x&gt;=1

Discuss the continuity of f(x) at x=1.


Homework Equations





The Attempt at a Solution



Putting x=1 in the above function gives you 2e and 3\pi -4. They seem to be equal, but how do I prove it mathematically? I've missed something here, but don't know what.
 
Physics news on Phys.org
How many decimal places are you looking at? They aren't THAT close to being equal.
 
No idea. Is this thing continuous at x=1?
 
chaoseverlasting said:
No idea. Is this thing continuous at x=1?

It's a lot easier to show they aren't equal than that they are. Hint: they can't be equal, e and pi are algebraically independent. Just punch the things into calculator that shows more than two decimal places.
 
Last edited:
Yeah, I did just that. The question has other parts which can only be solved if this thing was continuous. Nasty assumption.
 
2e and 3\pi-4 are definitely NOT equal!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
4
Views
4K
Replies
30
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
4K
Replies
7
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
1K
Replies
4
Views
2K