MHB Limit of (sqrt(16x^4+64x^2)) /(2x^2_4)

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The limit of the expression (sqrt(16x^4 + 64x^2) + x^2) / (2x^2 - 4) as x approaches infinity is calculated to be 5/2. The approach involves dividing all terms by x^2, which simplifies the expression under the square root. By factoring out x^4 from the radical and simplifying, the limit can be evaluated as x tends to infinity. The final result confirms that the limit converges to 5/2. This method effectively demonstrates the application of limits in calculus.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\lim_{{x}\to{\infty}}\frac{\sqrt{16{x}^{4}+64 {x}^{2} }+x^2}{2x^{2} - 4}=\frac{5}{2}$$

I tried to solve this by dividing all terms by$x^4$ but then the denomator will go zero.
 
Last edited:
Physics news on Phys.org
Divide all terms by $x^2$. Don't forget to square it (so it becomes $x^4$) when you bring it under the radical.
 
$$\lim_{{x}\to{\infty}}\frac{\sqrt{16{x}^{4}+64 {x}^{2} }+x^2}
{2x^{2} - 4}=\frac{5}{2}$$

Factor out $x^4$ in radical

$$\frac{\sqrt{{x}^{4}\left(16-\frac{64}{{x}^{2}}\right)}+{x}^{2}}
{2{x}^{2}+4}$$
David by $x^2 $
$$\frac{\frac{{x}^{2}}{{x}^{2}}\sqrt{16-\frac{64}{{x}^{2 }}}
+\frac{{x}^{2}}{{x}^{2}}}{\frac{2{x}^{2}}{{x}^{2}} +\frac{4}{{x}^{2}}}
\implies\frac{\sqrt{16-\frac{64}{{x}^{2}}}+1}{2 +\frac{4}{{x}^{2}}}$$
$$x\to\infty$$
$$\frac{\sqrt{16}+1}{2+0}=\frac{5}{2
}$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
6K
Replies
4
Views
4K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
3
Views
1K