MHB Limits of Rational Functions: Dividing by Highest Power?

AI Thread Summary
When evaluating limits of rational functions as x approaches infinity, dividing each term by the highest power of x helps simplify the expression. It is generally effective to divide by the highest power found in the denominator. This method is particularly useful when direct substitution leads to an indeterminate form, such as infinity over infinity. Different approaches like factoring or rationalizing may yield the same limit, but can be less efficient in certain cases. Ultimately, using the highest power method consistently leads to accurate results in these scenarios.
Yankel
Messages
390
Reaction score
0
Hello all

I have a general question. When I look for a limit of a rational function, there is this rule of dividing each term by the highest power.

I wanted to ask if I should divide by the highest power, or the highest power in the denominator, and why ?

I have seen different answers in different sources and I can't understand the difference between these methods, any example I tried looking at gave an identical solution no matter how I solved it.

Thank you
 
Mathematics news on Phys.org
Hi Mr Yankel

I hope that I understand your question properly ,,

The idea of evaluating rational polynomial functions where x approaches infinity is to eliminate variable (x) from either denominator or numerator ..

The rule of dividing each term by the highest power for a function of form (polynomial /polynomial) is an alternative way and it is useful when factoring and rationalizing is too hard or inefficient! . However , these all ways lead to the same answer where they can be applied.
Nevertheless ,In some functions , One or two of these three ways seem to be useless .

consider the following limits

$$\lim_{x\to\infty} \frac{x^3 +x^2 +1}{x^2+x}$$

$$\lim_{x\to\infty} \frac{x-1}{x^2-1}$$

$$\lim_{x\to\infty} \frac{x^3 +x^2 -1}{x^2+x}$$

If you substitute directly x by infinity in these limits you would get infinity over infinity which is indeterminate value.

Actually the first limit can be evaluated by rationalizing "since factoring is quite hard" ,, you would get:

$$x + \frac{1}{x^2+x}$$

From the fact that $$\lim_{x\to 0}\frac{n}{x}=\infty$$
and $$\lim_{x\to \infty}\frac{n}{x}=0$$

Then by substituting you would get infinity plus 0 which is infinity.
Also you can use the idea of dividing by the highest power to get the same answer.

The second one you can factor it , it will be :

$$\frac{1}{x+1}$$ the limit would be 0 then.
Also you can use the idea of dividing by the highest power to get the same answer


The third one you cannot use either factoring nor rationalizing , you would get indeterminate value , you can only use the idea of highest power !

Our limit would be :

$$\lim_{x\to\infty} \frac{\frac{x^3}{x^3} +\frac{x^2}{x^3} -\frac{1}{x^3}}{\frac{x^2}{x^3}+\frac{x}{x^3}}$$

then

$$\lim_{x\to\infty} \frac{1 +\frac{1}{x} -\frac{1}{x^3}}{\frac{1}{x}+\frac{1}{x}}$$

which leads to

$$\frac{1}{0} = \infty$$

I hope that I have answered your question :)
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top