- #1
Karamata
- 60
- 0
Hi,
can someone tell me where I can find the term: "homeotopic" (or, something like that, I don't know how to write in English).
My professor mentioned that term in the line integral, here it is:
Let [itex]\Omega \subseteq \mathbb{R}^k[/itex] be area (open and connected set). Curves [itex]\varphi, \psi: [\alpha, \beta]\longrightarrow \Omega[/itex] are continuous.
[itex]\varphi[/itex] and [itex]\psi[/itex] are homotopic if there is continuous function [itex]H:[\alpha, \beta]\times[0,1]\longrightarrow \Omega[/itex] such that valid [itex]H(t,0)=\varphi(t)[/itex] and [itex]H(t,1)=\psi(t)[/itex].
Sorry for bad English.
can someone tell me where I can find the term: "homeotopic" (or, something like that, I don't know how to write in English).
My professor mentioned that term in the line integral, here it is:
Let [itex]\Omega \subseteq \mathbb{R}^k[/itex] be area (open and connected set). Curves [itex]\varphi, \psi: [\alpha, \beta]\longrightarrow \Omega[/itex] are continuous.
[itex]\varphi[/itex] and [itex]\psi[/itex] are homotopic if there is continuous function [itex]H:[\alpha, \beta]\times[0,1]\longrightarrow \Omega[/itex] such that valid [itex]H(t,0)=\varphi(t)[/itex] and [itex]H(t,1)=\psi(t)[/itex].
Sorry for bad English.