- #1
- 19,724
- 25,734
Questions
1. (solved by @archaic ) Determine ##\lim_{n\to \infty}\cos\left(t/\sqrt{n}\right)^n## for ##t\in \mathbb{R}##.
2. (solved by @Antarres ) Let ##a_0,\ldots,a_n## be distinct real numbers. Show that for any ##b_0,\ldots,b_n\in\mathbb{R}##, there exists a unique polynomial ##p## of degree at most ##n## such that ##p(a_i)=b_i## for each ##i##.
3. (solved by @Antarres ) Let ##r(t)=(x(t),y(t))## be an arc-length parameterization of a smooth closed curve ##C## with length ##2\pi##. Let ##A## be the area enclosed by ##C##
a.) Using Green's formula, show ##A^2\leq\left(\int_0^{2\pi}x(t)^2dt \right)\ \left(\int_0^{2\pi}y'(t)^2 dt\right)##
b.) By translating ##C##, we may assume without loss of generality that ##\int_0^{2\pi}x(t) dt=0##. Use this assumption together with the Wirtinger inequality (question 1 of the January challenge) to show that ##A\leq\pi.##
c.) By examining the equality condition for the Wirtinger inequality (Problem No. 1 in 01/2020), show that ##A=\pi## can only happen if ##C## is a circle.
4. (solved by @Antarres ) Let ##f:[0,\infty)\to\mathbb{R}## be a continuous function such that the sequence of functions ##f_n(x)=f(x+n)## converges uniformly to a function ##g:[0,\infty)\to\mathbb{R}##. Show that ##f## and ##g## are uniformly continuous.
5.
a.) (solved by @etotheipi ) Let ##A## = ##
\begin{bmatrix}
-1 & 0 \\
2 & 1
\end{bmatrix}
## Find ##A^{99}##, ##A^{2n}## and ##A^{2n + 1}##, ##n \in \mathbb{N}##
b.) (open) How would we conclude in case of any commutative ring using ideals? (##\operatorname{char} \neq 2##)
6. (solved by @Antarres )
a.) If ##a##,##b##,##k## are integers with ##b \neq 0## show that ##(a + kb, b) = (a,b)##
b.) We take the Fibonacci sequence ##(F_n)## (starting from the third term): ##1, 2, 3, 5, 8, 13, \dots##, where each term after the second one, is the sum of the two previous terms. If ##F_n## is the ##n-##th term of the sequence, show that every two consecutive Fibonacci numbers are coprime.
7.
a.) (solved by @archaic ) If ##f: \mathbb{R} \to \mathbb{R}## is an integrable function in every closed interval of ##\mathbb{R}## show using calculus that
$$\int_{a}^{b} f(x)\,dx = \int_{a + d}^{b + d} f(x - d)\,dx$$
with ##a \leq b## and ##d \geq 0##.
b.) (open) The function ##\varphi\, : \,\mathbb{R}^2 \longrightarrow \mathbb{R}^2## with ##\varphi(t,r)=(t(r+2),t^2-r)## is injective on ##U:=(0,1)\times (-1,1)\,.## Show that ##\varphi\, : \,U\longrightarrow V:= \varphi(U)## is a diffeomorphism.
Next let ##f\, : \,\mathbb{R}^2\longrightarrow \mathbb{R}## be integrable over ##V##. Write
$$
\int_V f\,d\lambda = \int_{\ldots}^{\ldots} \int_{\ldots}^{\ldots} \ldots f(\ldots\, , \,\ldots)\,dr\,dt
$$
and calculate the area of ##V##.
8. (solved by @julian ) Calculate ##\displaystyle{\sum_{k=1}^\infty} \dfrac{1}{\binom{2k}{k}}##
9. (solved by @Antarres ) Let ##a## be an integer and ##p## an odd prime which does not divide ##a##. The left multiplication
$$
\lambda_{a,p}\, : \,\mathbb{Z}_p^\times \longrightarrow \mathbb{Z}_p^\times \, ; \,x \longmapsto ax \operatorname{mod} p
$$
is then a permutation on ##\{\,1,\ldots,p-1\,\}\,.## Prove
$$
\left(\dfrac{a}{p}\right) = \operatorname{sgn}\left(\lambda_{a,p}\right)
$$
10. (solved by @suremarc and @Antarres ) Let ##\mathcal{H}## be a real Hilbert space and ##\beta## a continuous bilinear form, ##\mathcal{H}^*## its dual space of continuous functionals on ##\mathcal{H}##, and ##\beta(f,f)\geq C\|f\|^2>0.##
Prove that for any given continuous functional ##F \in \mathcal{H}^*## there is a unique vector ##f^\dagger \in \mathcal{H}## such that
$$
F(g)=\beta(f^\dagger,g)\quad \forall\,\,g\in \mathcal{H}
$$
High Schoolers only
11. Answer the following questions:
a.) (solved by @mmaismma ) How many knights can you place on a ##n\times m## chessboard such that no two attack each other?
b.) (solved by @Not anonymous ) In how many different ways can eight queens be placed on a chessboard, such that no queen threatens another? Two solutions are not different, if they can be achieved by a rotation or by mirroring of the board. (For this part there is no proof required.)
12. (solved by @Not anonymous ) Determine (with justification, but without explicit calculation) which of
a.) ##1000^{1001}## and ##{1002}^{1000}##
b.) (solved by @etotheipi ) ##e^{0.000009}-e^{0.000007}+e^{0.000002}-e^{0.000001}## and ##e^{0.000008}-e^{0.000005}##
is larger.
13. (solved by @etotheipi , @Not anonymous)
a.) Let ##A=(-2,0)\, , \,B=(0,4)## and ##M=(1,3)\,.## What is ##\alpha = \sphericalangle (AMB)##?
b.) Let ##C=(-1,2+\sqrt{5})\, , \,D=(-1,2-\sqrt{5})## and ##M=(1,3)\,.## What is ##\beta = \sphericalangle (CMD)##?
14. (solved by @Not anonymous ) Find the exact formula of the function ##f(x) =\sup_{t \in \mathbb{R}}(2tx - t^2)##, ##x \in \mathbb{R}##.
15. (solved by @etotheipi ) In what way does the oscillation period of a pendulum change, if the suspension pivot moves
a.) vertically up with acceleration ##a##,
b.) vertically down with acceleration ##a < g##,
c.) horizontally with acceleration ##a##?
1. (solved by @archaic ) Determine ##\lim_{n\to \infty}\cos\left(t/\sqrt{n}\right)^n## for ##t\in \mathbb{R}##.
2. (solved by @Antarres ) Let ##a_0,\ldots,a_n## be distinct real numbers. Show that for any ##b_0,\ldots,b_n\in\mathbb{R}##, there exists a unique polynomial ##p## of degree at most ##n## such that ##p(a_i)=b_i## for each ##i##.
3. (solved by @Antarres ) Let ##r(t)=(x(t),y(t))## be an arc-length parameterization of a smooth closed curve ##C## with length ##2\pi##. Let ##A## be the area enclosed by ##C##
a.) Using Green's formula, show ##A^2\leq\left(\int_0^{2\pi}x(t)^2dt \right)\ \left(\int_0^{2\pi}y'(t)^2 dt\right)##
b.) By translating ##C##, we may assume without loss of generality that ##\int_0^{2\pi}x(t) dt=0##. Use this assumption together with the Wirtinger inequality (question 1 of the January challenge) to show that ##A\leq\pi.##
c.) By examining the equality condition for the Wirtinger inequality (Problem No. 1 in 01/2020), show that ##A=\pi## can only happen if ##C## is a circle.
4. (solved by @Antarres ) Let ##f:[0,\infty)\to\mathbb{R}## be a continuous function such that the sequence of functions ##f_n(x)=f(x+n)## converges uniformly to a function ##g:[0,\infty)\to\mathbb{R}##. Show that ##f## and ##g## are uniformly continuous.
5.
a.) (solved by @etotheipi ) Let ##A## = ##
\begin{bmatrix}
-1 & 0 \\
2 & 1
\end{bmatrix}
## Find ##A^{99}##, ##A^{2n}## and ##A^{2n + 1}##, ##n \in \mathbb{N}##
b.) (open) How would we conclude in case of any commutative ring using ideals? (##\operatorname{char} \neq 2##)
6. (solved by @Antarres )
a.) If ##a##,##b##,##k## are integers with ##b \neq 0## show that ##(a + kb, b) = (a,b)##
b.) We take the Fibonacci sequence ##(F_n)## (starting from the third term): ##1, 2, 3, 5, 8, 13, \dots##, where each term after the second one, is the sum of the two previous terms. If ##F_n## is the ##n-##th term of the sequence, show that every two consecutive Fibonacci numbers are coprime.
7.
a.) (solved by @archaic ) If ##f: \mathbb{R} \to \mathbb{R}## is an integrable function in every closed interval of ##\mathbb{R}## show using calculus that
$$\int_{a}^{b} f(x)\,dx = \int_{a + d}^{b + d} f(x - d)\,dx$$
with ##a \leq b## and ##d \geq 0##.
b.) (open) The function ##\varphi\, : \,\mathbb{R}^2 \longrightarrow \mathbb{R}^2## with ##\varphi(t,r)=(t(r+2),t^2-r)## is injective on ##U:=(0,1)\times (-1,1)\,.## Show that ##\varphi\, : \,U\longrightarrow V:= \varphi(U)## is a diffeomorphism.
Next let ##f\, : \,\mathbb{R}^2\longrightarrow \mathbb{R}## be integrable over ##V##. Write
$$
\int_V f\,d\lambda = \int_{\ldots}^{\ldots} \int_{\ldots}^{\ldots} \ldots f(\ldots\, , \,\ldots)\,dr\,dt
$$
and calculate the area of ##V##.
8. (solved by @julian ) Calculate ##\displaystyle{\sum_{k=1}^\infty} \dfrac{1}{\binom{2k}{k}}##
9. (solved by @Antarres ) Let ##a## be an integer and ##p## an odd prime which does not divide ##a##. The left multiplication
$$
\lambda_{a,p}\, : \,\mathbb{Z}_p^\times \longrightarrow \mathbb{Z}_p^\times \, ; \,x \longmapsto ax \operatorname{mod} p
$$
is then a permutation on ##\{\,1,\ldots,p-1\,\}\,.## Prove
$$
\left(\dfrac{a}{p}\right) = \operatorname{sgn}\left(\lambda_{a,p}\right)
$$
10. (solved by @suremarc and @Antarres ) Let ##\mathcal{H}## be a real Hilbert space and ##\beta## a continuous bilinear form, ##\mathcal{H}^*## its dual space of continuous functionals on ##\mathcal{H}##, and ##\beta(f,f)\geq C\|f\|^2>0.##
Prove that for any given continuous functional ##F \in \mathcal{H}^*## there is a unique vector ##f^\dagger \in \mathcal{H}## such that
$$
F(g)=\beta(f^\dagger,g)\quad \forall\,\,g\in \mathcal{H}
$$
High Schoolers only
11. Answer the following questions:
a.) (solved by @mmaismma ) How many knights can you place on a ##n\times m## chessboard such that no two attack each other?
b.) (solved by @Not anonymous ) In how many different ways can eight queens be placed on a chessboard, such that no queen threatens another? Two solutions are not different, if they can be achieved by a rotation or by mirroring of the board. (For this part there is no proof required.)
12. (solved by @Not anonymous ) Determine (with justification, but without explicit calculation) which of
a.) ##1000^{1001}## and ##{1002}^{1000}##
b.) (solved by @etotheipi ) ##e^{0.000009}-e^{0.000007}+e^{0.000002}-e^{0.000001}## and ##e^{0.000008}-e^{0.000005}##
is larger.
13. (solved by @etotheipi , @Not anonymous)
a.) Let ##A=(-2,0)\, , \,B=(0,4)## and ##M=(1,3)\,.## What is ##\alpha = \sphericalangle (AMB)##?
b.) Let ##C=(-1,2+\sqrt{5})\, , \,D=(-1,2-\sqrt{5})## and ##M=(1,3)\,.## What is ##\beta = \sphericalangle (CMD)##?
14. (solved by @Not anonymous ) Find the exact formula of the function ##f(x) =\sup_{t \in \mathbb{R}}(2tx - t^2)##, ##x \in \mathbb{R}##.
15. (solved by @etotheipi ) In what way does the oscillation period of a pendulum change, if the suspension pivot moves
a.) vertically up with acceleration ##a##,
b.) vertically down with acceleration ##a < g##,
c.) horizontally with acceleration ##a##?
Last edited: