I guess it's time to give both of you -
@suremarc and
@Antarres - the credit for solving the problem, since you both have had a correct strategy. Since this problem - Lemma of Babuška-Lax-Milgram - is a bit confusing, I'll add my proof. There was nothing wrong with either of yours, but for all other readers who might have had difficulties to follow:
If we define a continuous function ##B(f)(g):=\beta(f,g)## then Riesz' representation theorem gives us an isometric isomorphism ##T\, : \,\mathcal{H}^* \longrightarrow \mathcal{H}## such that for every ##B(f)\in \mathcal{H}^*## there is a unique ##T(B(f))## such that ##\|B(f)\|=\|T(B(f))\|## and
$$
B(f)(g)=\langle T(B(f)) ,g \rangle_\mathcal{H} = \beta(f,g)\quad \forall \,\, g\in \mathcal{H} \quad (*)
$$
or generally ##f^*(g)=\langle T(f^*),g \rangle_\mathcal{H}\,\, \forall \,\, g\in \mathcal{H} \quad (*)##
The functionals ##B(f)## are bounded since ##\beta## is continuous, i.e. ##\|B\|## is a finite real number. We get from our lower bound
\begin{align*}
C\|f\|^2&\leq |\beta(f,f)|=\langle T(B(f)) ,f \rangle_\mathcal{H}\\
&\leq \|T(B(f))\|\cdot\|f\|= \|B(f)\|\cdot\|f\| \leq \|B\|\cdot \|f\|^2
\end{align*}
hence ##0 < \dfrac{C}{\|B\|} \leq 1.## We now define the function
$$
Q(f):=f-k\cdot \left( T(B(f)) - T(F) \right)
$$
on ##\mathcal{H}## with a real number ##k\in \mathbb{R}-\{0\}.## A vector ##f^\dagger \in \mathcal{H}## is a fixed point of ##Q## iff ##T(B(f^\dagger)) - T(F)=0\,.## In general we have for all ##g\in \mathcal{H}##
\begin{align*}
T(B(f)) - T(F) \stackrel{(**)}{=} 0 &\Longleftrightarrow F(g)\stackrel{(**)}{=}B(f)(g) =\beta(f ,g)\stackrel{(*)}{=}\langle T(B(f)) ,g \rangle_\mathcal{H}\\
&\Longleftrightarrow F(g) \stackrel{(*)}{=} \langle T(F),g \rangle_\mathcal{H} \stackrel{(**)}{=} \langle T(B(f)) ,g \rangle_\mathcal{H}\\
&\Longleftrightarrow \langle T(B(f))-T(F),g\rangle_\mathcal{H} \stackrel{(**)}{=} 0
\end{align*}
again by Riesz' representation theorem and the equations above. As ##g\in \mathcal{H}## is arbitrary, we may set ##g:=T(B(f^\dagger ))-T(F)## for a fixed point of ##Q## and get ##\|T(B(f^\dagger ))-T(F)\|^2=0## hence
$$
B(f^\dagger)=\beta(f^\dagger,-)=F
$$
which has to be shown. Thus all what's left to show is, that such a unique fixed point ##f^\dagger## of ##Q## exists, which we will prove with Banach's fixed point theorem.
\begin{align*}
\|Q(f)-Q(g)\|^2 &= \| f-k(T(B(f))-T(F))-g+k(T(B(g))-T(F)) \|^2\\
&= \langle (f-g)-kT(B(f-g)),(f-g)-kT(B(f-g)) \rangle_\mathcal{H}\\
&\stackrel{(*)}{=}l, \|f-g\|^2 -2k\, \langle T(B(f-g)) , f-g\rangle_\mathcal{H} +k^2\,\|T(B(f-g))\|^2 \\
&\stackrel{(*)}{=} \|f-g\|^2 -2k \,\beta(f-g,f-g) +k^2\, \|B(f-g)\|^2 \\
&\leq \|f-g\|^2 -2k\, C\,\|f-g\|^2 + k^2\, \|B\|^2\,\|f-g\|^2 \\
&= \|f-g\|^2 \left( 1-2k\,C+k^2\,\|B\|^2 \right) \\
&\stackrel{\text{set }k:=C/\|B\|^2}{=} \|f-g\|^2 \left(1 - \dfrac{C^2}{\|B\|^2}\right)
\end{align*}
We have seen that ##\dfrac{C}{\|B\|} \in (0,1]## hence ##q:=1 - \dfrac{C^2}{\|B\|^2} \in [0,1)## and ##\|Q(f)-Q(g)\|^2=q\,\|f-g\|^2## and the statement follows from Banach's fixed point theorem.