- #1
Pratha
- 2
- 0
Linear Algebra problem (Least Squares? - Distance between lines)
We have two points R = (x,x,x) and S = (y,3y,-1). All we know is that they are on lines somewhere in 3-space and that they don't cross. Need to find an x and y that minimize || R - S ||2
ATAx = ATb
I tried using the equation above, i.e. inverting (ATA) and multiplying both sides with that, but the resulting matrix that I got was a 2x1 matrix of zeros. This is definitely not the right answer. I also tried using (C+D(t)-b)2... for each coord and doing a partial derivative for C and D, but I ended up getting the same equation for both derivatives, which I am sure is not right.
I am very confused and not sure where to go from here.
Homework Statement
We have two points R = (x,x,x) and S = (y,3y,-1). All we know is that they are on lines somewhere in 3-space and that they don't cross. Need to find an x and y that minimize || R - S ||2
Homework Equations
ATAx = ATb
The Attempt at a Solution
I tried using the equation above, i.e. inverting (ATA) and multiplying both sides with that, but the resulting matrix that I got was a 2x1 matrix of zeros. This is definitely not the right answer. I also tried using (C+D(t)-b)2... for each coord and doing a partial derivative for C and D, but I ended up getting the same equation for both derivatives, which I am sure is not right.
I am very confused and not sure where to go from here.
Last edited: