(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let P1 and P2 be the projections defined on R^3 by:

P1(x1, x2, x3) = (1/2(x1+x3), x2, 1/2(x1+x3))

P2(x1, x2, x3) = (1/2(x1-x3), 0, 1/2(-x1+x3))

a) Let T = 5P1 - 2P2 and determine if T is diagonalizable.

b) State the eigenvalues and associated eigenvectors of T.

2. Relevant equations

3. The attempt at a solution

For a), I believe it is diagonalizable because P1 + P2 gives us (x1, x2, x3). Although I'm could be wrong on that...

It's mainly b) that I'm concerned for. By the theorem, (T = c1P1 + c2P2...+.. where c are eigenvalues) 5 and -2 are the eigenvalues (although this sort of confuses me because I had thought the eigenvalues of projections are always 1 and 0).

How can we find the eigenvectors? Had this been a matrix it's simple, subtract the eigenvalue from the main diagonal, simplifiy, and find the nullspace.

Also, the solution to b) is for eigenvalue 5, the eigenvectors are <(1,0,1),(0,1,0)> and for eigenvalue -2, the eigenvector is <(-1,0,1)> (so my guess some matrix is formed?)

It feels like I'm missing something obvious here. Can anyone please help me out?

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Linear algebra - Spectral decompositions: Eigenvectors of projections

**Physics Forums | Science Articles, Homework Help, Discussion**