Linear Algebra Text: Suggestions and Recommendations

Click For Summary
SUMMARY

This discussion centers on recommended texts for self-studying linear algebra. Key suggestions include "Linear Algebra" by Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence, which is praised for its comprehensive coverage and exercises. "Linear Algebra Done Right" by Sheldon Axler is noted for its abstract approach but criticized for lacking solutions and practical applications. Other recommended texts include "Linear Algebra" by Gareth Williams and "Linear Algebra" by Hoffman and Kunze, which is considered a classic yet potentially challenging for beginners. Free resources, such as concise notes from Stanford Professor Vakil, are also highlighted as valuable study aids.

PREREQUISITES
  • Basic understanding of linear algebra concepts
  • Familiarity with mathematical proofs
  • Experience with calculus, preferably AP Calculus level
  • Access to various linear algebra textbooks for comparison
NEXT STEPS
  • Explore "Linear Algebra" by Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence for a comprehensive study.
  • Review "Linear Algebra Done Right" by Sheldon Axler for a deeper theoretical understanding.
  • Investigate "Linear Algebra" by Gareth Williams for a more application-focused introduction.
  • Access free online resources, such as Stanford Professor Vakil's notes, for concise explanations of key concepts.
USEFUL FOR

Students and self-learners interested in mastering linear algebra, particularly those with a background in calculus and a desire for structured learning resources.

Yowhatsupt
Messages
34
Reaction score
0
I'm planning on teaching myself linear algebra over the summer and was wondering what text to grab.

Thoughts, suggestions, recommendations etc are all appreciated.:redface: :smile:
 
Physics news on Phys.org
i like adams and shifrin, or my webnotes, or hoffman and kunze, or lang . if you have a library you might look for one of he published versiuons, if not and want a fre book, my notes are free but very terse. in 15 pages i cover what other books cover in 200-300 pages. still i do a good job.
 
shields is also a good book.
 
Hoffman and Kunze is excellent, rather old and not at all "watered down".

I had Kunze as my teacher in Linear Algebra.
 
I agree that Kunze-Hoffman is the best book on linear algebra by far, but it may be a little difficult for a first course.
 
How about Linear Algebra by Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence? Is this text suitable for self-studying?
 
wow halls, kunze is a friend of mine too. where were you his student?
 
Psi-String said:
How about Linear Algebra by Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence? Is this text suitable for self-studying?
I used it, and highly recommend it.
 
You could try Axler's Linear Algebra, which makes little use of determinants. I have heard good things about W.H. Greub's book. Finally, as already mentioned, there are many free books on the Internet. In particular, there is a very good set of notes by a Stanford Professor at http://math.stanford.edu/~vakil/113/katznelsonJan1.pdf
 
Last edited by a moderator:
  • #10
I disagree about Axler, especially if the desire is to learn applications or if it is being used as a first exposure. There are no solutions given anywhere, he will not provide solutions to students/self-studiers, and there are many theorems/propositions/lemmas etc that are left "as an exercise." I have been using this book for the last quarter, and honestly, I hate it. I think it is best if used in conjunction with a less abstract text, but that is just my opinion.

Also, regarding "making little use of determinants," it makes for very awkward sections on eigenvectors and eigenvalues. It is as if Axler had nothing better to do but write a book without determinants simply to be different.
 
  • #11
I agree Axler would be very tough the first time through, but that would also rule out Hoffman-Kunze.

For a basic introduction, there is a book by Gareth Williams that goes into applications and is at an understandable level.

For me, I like to use two different books. I read through a basic introduction such as David Lay's or Gareth Williams. Then, supplement that with Hoffman-Kunze or Axler "level" book.
 
  • #12
Forget Axler; Hoffman-Kunze or Friedberg are the way to go. (I personally lean towards Friedberg because of the amount of material covered in that book, as well as the plethora of exercises.)
 
  • #13
mathwonk said:
i like adams and shifrin, or my webnotes, or hoffman and kunze, or lang . if you have a library you might look for one of he published versiuons, if not and want a fre book, my notes are free but very terse. in 15 pages i cover what other books cover in 200-300 pages. still i do a good job.

I'll definitely be glancing through your notes...:)
 
  • #14
thanks for the suggestions people, I don't particularly have much experience with proofs or abstract problems. Most of my calculus knowledge is AP calculus, plug and chug. Do you guys still recommend the same texts? I love math, and I don't have a problem with buying supplemental study books with examples (I've done this since geometry as HS teachers do not teach enough)
 
  • #15
my notes on proofs of big theorems in the calculus thread address this.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K