Linear Expansion - Finding temperature

Click For Summary
SUMMARY

The discussion focuses on calculating the change in temperature required for one ring's outer radius to equal another ring's inner radius using linear expansion principles. Participants identified the need for three key equations involving the coefficients of linear expansion (α1, α2) and the original lengths of the rings. A critical point raised was the incorrect formulation of an equation that included "change in L_2" on both sides, indicating a need for clarity in variable definitions. The conversation emphasizes the importance of accurately expressing relationships between the variables involved in thermal expansion calculations.

PREREQUISITES
  • Understanding of linear expansion and coefficients of linear expansion (α1, α2)
  • Familiarity with basic algebraic manipulation and equation solving
  • Knowledge of the physical properties of materials related to temperature changes
  • Ability to define and differentiate between variables in thermal expansion problems
NEXT STEPS
  • Review the principles of linear thermal expansion in materials science
  • Study the derivation and application of the linear expansion formula: ΔL = α * L0 * ΔT
  • Explore examples of thermal expansion problems involving multiple materials
  • Learn how to accurately define and use variables in mathematical equations
USEFUL FOR

Students and professionals in physics, engineering, and materials science who are working on problems related to thermal expansion and temperature effects on materials.

JoeyBob
Messages
256
Reaction score
29
Homework Statement
See attached
Relevant Equations
change length= a*original length * change in temp
So if I am understanding the question correctly, I need to find the change in temperature that causes one rights outer radii to be the same as another rings inner radii.

Now what I tried is two equations

change length_1= a_1*original length_inner * change in temp

change length_2= a_2*original length_outer * change in temp

But the problem is that there is one too many unknowns here - i don't know the temp, change in L_1 or change in L-2. Either there's another equation I am missing or I am using the wrong approach.
 

Attachments

  • question.PNG
    question.PNG
    10.6 KB · Views: 152
Physics news on Phys.org
Okay I think I found the equation I was missing.

L_1+change in L_2 = L_2 + change in L_2

The answer I got was only a bit off from the right answer, probably from rounding or something.
 
JoeyBob said:
Okay I think I found the equation I was missing.

L_1+change in L_2 = L_2 + change in L_2

The answer I got was only a bit off from the right answer, probably from rounding or something.
That equation makes no sense since you have "change in L_2" on both sides. What did you mean, in terms of the given variables ri etc? Use α1, α2 for the coefficients.
Please post your answer and working so that we can check whether it is just rounding error.
 
haruspex said:
That equation makes no sense since you have "change in L_2" on both sides. What did you mean, in terms of the given variables ri etc? Use α1, α2 for the coefficients.
Please post your answer and working so that we can check whether it is just rounding error.
It looks like a typo.
 
haruspex said:
That equation makes no sense since you have "change in L_2" on both sides. What did you mean, in terms of the given variables ri etc? Use α1, α2 for the coefficients.
Please post your answer and working so that we can check whether it is just rounding error.
Its a typo. change in L_1.

The 3 equations are correct?
 
JoeyBob said:
The 3 equations are correct?
Impossible to say without definitions of the variables.
This is certainly correct:
find the change in temperature that causes one ring's outer radius to be the same as the other ring's inner radius.
But you have not posted an equation that expresses that in terms of r1, r2, α1, α2 and Δθ.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
5K