Linear Relationship b/w Spring Compression and Projectile Distance?

AI Thread Summary
The discussion centers on the relationship between spring compression and the horizontal distance traveled by a marble launched from a spring gun. It is established that the horizontal speed of the marble, once released, is constant and determined by the spring force, which follows Hook's law. The work done on the marble is converted into kinetic energy, leading to the conclusion that the velocity is proportional to the square root of the compression distance. Ultimately, the hypothesis is confirmed that the distance traveled is not a linear function of the spring compression. The discussion emphasizes the importance of understanding the physics and mathematics involved in this scenario.
Steven60
Messages
7
Reaction score
1
I have a question about a spring gun. Suppose the barrel of a spring gun is placed horizontally at the edge of a horizontal table. You put say a marble in the barrel and compress the spring x cm and after releasing the marble it travels a horizontal distance of y cm before hitting the floor (so motion is of a projectile). My question is whether or not the horizontal distance traveled and the amount the spring is compresses make a linear relationship? If so, then how can I prove this? This is not homework.
Thanks!
 
Physics news on Phys.org
Seems to be purely a math problem. Perhaps sketch the system and write the relevant equations needed to determine this?
 
This is a nice physics exercise - there are several physical considerations, and then some simple math.

You have two forces acting on the marble ... the spring force, which launches the marble, and gravity.

Once the marble leaves the launch tube it will have a constant "horizontal" speed - ignoring air resistance - and an initial vertical speed of zero. Call this initial horizontal speed V.

The vertical speed will increase with time due to the constant gravitational acceleration - and will hit the floor at a definite time which depends only on the height of the table. Call this duration T.

Then the distance from the table to the point of contact will be D = V x T.

The time T does not depend upon the spring force, only on the height of the table and local value g=9.8 m/s^2.

Thus you only need to determine if the speed V is proportional to the spring force; by Hook's law we know that a "good" spring obeys F = -k * X, where X is the compression/extension distance and k is the spring's constant.

If we switch to energy we have work done on marble is W = Integral[F dx] over the interval x=[0,X]. Note that the force is changing as the spring moves! So W = Integral[ k*x dx] = 1/2 k*X^2.

But this work has been converted into kinetic energy of the marble. For a marble of mass=M, and given that it is NOT rolling or spinning, then the kinetic energy is KE=1/2 M*V^2 = 1/2 k*X^2=W.

Thus V = k/M Sqrt[X]. xx Correction: xxx Make that V = Sqrt[k/M] * X.

Thus the hypothesis is true!

Thanks to dauto for noticing the mistake at the end! :-)
 
Last edited:
The equations involved will be ##d=vt## for constant ##v## (and assuming that the initial point when exiting the spring gun is defined as 0 distance), ##U_{spring}=\frac12k\Delta x^2## and ##K=\frac12mv^2##. ##\Delta x## is the amount the spring is compressed, and ##v## is the velocity of the object as it leaves the spring. This approximation assumes that the object does not stick which is a good assumption for a spring gun. Solve for ##v## to find the relationship between ##\Delta x## and ##d##.
 
UltrafastPED said:
This is a nice physics exercise - there are several physical considerations, and then some simple math.

You have two forces acting on the marble ... the spring force, which launches the marble, and gravity.

Once the marble leaves the launch tube it will have a constant "horizontal" speed - ignoring air resistance - and an initial vertical speed of zero. Call this initial horizontal speed V.

The vertical speed will increase with time due to the constant gravitational acceleration - and will hit the floor at a definite time which depends only on the height of the table. Call this duration T.

Then the distance from the table to the point of contact will be D = V x T.

The time T does not depend upon the spring force, only on the height of the table and local value g=9.8 m/s^2.

Thus you only need to determine if the speed V is proportional to the spring force; by Hook's law we know that a "good" spring obeys F = -k * X, where X is the compression/extension distance and k is the spring's constant.

If we switch to energy we have work done on marble is W = Integral[F dx] over the interval x=[0,X]. Note that the force is changing as the spring moves! So W = Integral[ k*x dx] = 1/2 k*X^2.

But this work has been converted into kinetic energy of the marble. For a marble of mass=M, and given that it is NOT rolling or spinning, then the kinetic energy is KE=1/2 M*V^2 = 1/2 k*X^2=W.

Thus V = k/M Sqrt[X].

Thus the hypothesis is false - the distance covered by the marble is NOT a linear function of the compression distance for the spring.

You made a mistake at the very end. In fact, after correcting the mistake, you proved that the hypothesis is true.
 
  • Like
Likes 1 person
Thanks for your replys. I actually worked this out myself and actually did the same exact steps as UltrafastPED.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top