(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let B be an invertible n x n matrix. Prove that the linear transformation L: Mn,n [tex]\rightarrow[/tex] Mn,n given by L(A) = AB, is an isomorphism.

3. The attempt at a solution

I know to show it is an isomorphism i need to show that L is both onto and one-to-one.

By the theorem that says:

Let T:V[tex]\rightarrow[/tex]W be a linear transformation with vector spaces V and W both of dimension n. Then T is one-to-one if and only if it is onto.

To prove both conditions needed for an isomorphism i can just prove it is one-to-one as in this case, 'V' and 'W' are the same dimension and so proving L is one-to-one also proves it is onto.

To prove it is one-to-one, i need to determine the kernel of L and show that it is {0}. To do this i need to use the fact that B is an invertible n x n matrix and L(A)=AB.

I need some guidance on how to use these features to show the kernel of L os {0}???

Thanks in advance

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Linear transformation, isomorphic

**Physics Forums | Science Articles, Homework Help, Discussion**