Linearity of Heat Conductance - Is Heat Transfer the Same in All Directions?

AI Thread Summary
The discussion revolves around the principles of heat conduction and whether it behaves linearly in two or three dimensions. It addresses a scenario where a constant power heat source is embedded in a solid surrounded by a cooling box, questioning if each side contributes equally to cooling. It is clarified that while in a cube, each side could theoretically contribute equally, this does not apply when the geometry changes, as 3-D conduction is not solely dependent on one dimension. The conversation also touches on the linearity of heat transfer equations, indicating that as long as coefficients remain constant and temperature differences are small, contributions from multiple cooling sources can be summed. Overall, understanding the geometry and conditions is crucial for accurate heat transfer calculations.
Yoni
Messages
65
Reaction score
1
Heat conductance - linear?

Hello forum friends,

I have stumbled upon the fallowing heat conduction problem:
Consider a heat source of constant power embedded inside a solid with a constant heat capacity and conductance. Around the source is a box with a constant temperature, which cools the source.
My question is: If the box is a cube, can I conclude that each side contributes equally to the cooling? If I had just one side (out of 6) could I conclude 1/6 cooling?
However if the box is not a cube. Two opposite sides are pulled 2 times further off, can I conclude a cooling of 1/2 about these sides?

Is heat conductance in two or three dimensions a linear problem?
 
Science news on Phys.org
Hi Yoni,
Yoni said:
If the box is a cube, can I conclude that each side contributes equally to the cooling? If I had just one side (out of 6) could I conclude 1/6 cooling?

Yes, but it wouldn't be much help in figuring out the answer. You'd have to model conduction in a pyramid, where the base is the original side of the cube and the other sides are adiabatic.
Yoni said:
However if the box is not a cube. Two opposite sides are pulled 2 times further off, can I conclude a cooling of 1/2 about these sides?

No, because 3-D conduction is not merely a function of that single dimension.

I don't recall the solution for the geometry you describe, but you can probably find one in one of the handbooks for conduction heat transfer.
 
Hello,
The fallowing question is troubling me, and I need to fully understand it before I go forth with my experiment:
Is 3-D transfer of heat by conduction linear?

Consider a point in space which is heated. The heated source is r1 distance from a cooling source (which cools by convection), and r2 distance from a second cooling source.
The heat transfer equation: [ dQ/dt = h*dT/dx ] predicts the transfer of heat from one source to the other as a function of the temperature gradient.
So if I calculate the dQ/dt from one cooling source, and the dQ/dt of the other, can I conclude that the total transfer of heat is the sum?
If not, why? Is it because of the transfer of heat between the two cooling sources? Can I neglect this?

I'd appreciate any help,
Yoni

P.S please do not move this to a "homework forum", this is a basic question.
 
You can assume that the process is linear, as long no coefficients or material properties in your equations are functions of temperature. For example, h\frac{dT}{dx} is linear as long as h isn't a function of temperature. In practice, this means that the temperature difference should be small.

But note that this is a slightly different question from that in your post https://www.physicsforums.com/showthread.php?t=236917" from yesterday. You can't calculate heat transfer results from two differently sized cubes, add them together, and expect to get the correct results for a rectangular box.
 
Last edited by a moderator:
Thanks for your help. I have the solution a single tranfer of heat betwin a source and one cooling spot. Since I don't expect the heat coefficient to be dependent on temperature, I understand I can just sum the contributions of all cooling spot to get the over all cooling of the source.
Best to all of you...
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy. So in the video it says: Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles. Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total...
Back
Top