- 7
- 0
Say f is a continuous function on R. How could I find two linearly independent solutions of (y' + f(x)y)' = 0? Notice that there is no hypothesis about f being differentiable, so the obvious method of attack (taking the derivative of each term in the parenthesis and working off the resultant second-order differential equation) probably isn't a good idea. How does the linearly independent part play into this all?