A Liouville space and nonlinear optical spectrosopy -- deriving the the second order nonlinear optical signal

Click For Summary
The discussion focuses on deriving the second-order nonlinear optical signal using both Liouville space and Hilbert space approaches, referencing Mukamel's "Principles of Nonlinear Optical Spectroscopy." Key equations, including Eq. (5.21) and Eq. (5.22), are presented to illustrate the differences in the derivations. The author notes discrepancies between the results obtained from the Liouville space method and Mukamel's findings, particularly in Eq. (6.18). The thread seeks suggestions and hints to resolve these differences and improve the derivation process. The conversation emphasizes the complexity of nonlinear optical spectroscopy and the importance of accurate mathematical representation.
PRB147
Messages
122
Reaction score
0
TL;DR
I encountered difficulty in deriving the the second order nonlinear optical signal from the book of Mukamel "Principles of Nonlinear Optical Spectroscopy"; Two different approaches results in different results, please help.
P119, Mukamel's book "Principles of Nonlinear Optical Spectroscopy"
Eq.(5.21) in Liouville space
$$ S^{(2)}(t_2,t_1)=\left(\frac{i}{\hbar}\right)^2 \left\langle \left\langle V\left|\mathscr{G}(t_2)\mathscr{V}\mathscr{G}(t_1)\mathscr{V}\right|\rho(-\infty) \right\rangle\right\rangle $$
in Hilbert space
Eq.(5.22) $$S^{(2)}(t_2,t_1)=\left(\frac{i}{\hbar}\right)^2 \left\langle \left[\left[V(t_2+t_1),V(t_1)\right],V(0)\right]\rho(-\infty)\right\rangle $$
Eq.(5.24) $$Q_1(t_2,t_1)=\left\langle V(t_1+t_2)V(t_1)V(0)\rho(-\infty)\right\rangle; Q_1(t_2,t_1)=-\left\langle V(t_1)V(t_1+t_2)V(0)\rho(-\infty)\right\rangle$$

I derived the Eq (6.18) in Page 150 in Liouville space approach and in Hilbert space:
In Liouville space, The drivation as follows:
$$
\begin{aligned}
~&S^{(2)}(t_2,t_1)=\left(\frac{i}{\hbar}\right)^2 \left\langle \left\langle V\left|\mathscr{G}(t_2)\mathscr{V}\mathscr{G}(t_1)\mathscr{V}\right|\rho(-\infty) \right\rangle\right\rangle \\
&=\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,2\cdots, 5} \left\langle \left\langle V| a_1b_1\right\rangle\right\rangle\rangle\left\langle \left\langle a_1b_1\left|\mathscr{G}(t_2)\right|a_2b_2\right\rangle\right\rangle
\left\langle\left\langle a_2b_2 \left|\mathscr{V}\right|a_3b_3 \right\rangle\right\rangle \left\langle \left\langle a_3b_3 \left|\mathscr{G}(t_1)\right|a_3b_3\right\rangle\right\rangle \\ &
\left\langle \left\langle a_3b_3\left|\mathscr{V}\right|a_5b_5\right\rangle\right\rangle\left\langle \left\langle a_5b_5\left|\rho(-\infty) \right.\right\rangle\right\rangle \\&
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\times\left[\mu_{a_1a_3}\delta_{b_1b_3}-\mu_{b_3b_1}\delta_{a_1a_3}\right]\times\left[\mu_{a_3a_5}\delta_{b_3b_5}-\mu_{b_5b_3}\delta_{a_3a_5}\right]\rho(a_5)\delta_{a_5b_5} \\ &
\end{aligned}
$$


11 (The product of the first term in the first parentheses and the first term in the second parentheses in the above equation)
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\times\left[\mu_{a_1a_3}\delta_{b_1b_3}\right]\times\left[\mu_{a_3a_5}\delta_{b_3b_5}\right]\rho(a_5)\delta_{a_5b_5} \\
& =\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5}\rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\times\left[\mu_{a_1a_3}\mu_{a_3a_5}\right]\left(\delta_{b_1b_3}\delta_{b_3b_5}\delta_{a_5b_5}\right) \\
&= \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1}^{a_3a_5}\rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_1} (t_1)
\times\left[\mu_{a_1a_3}\mu_{a_3a_5}\right]\left(\delta_{b_1a_5}\right) \\
&= \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1}^{a_3}\rho(b_1) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_1} (t_1)
\times\left[\mu_{a_1a_3}\mu_{a_3a_5}\right] \\
&\xlongequal[b_1\rightarrow a,a_1\rightarrow b]{a_3\rightarrow c}\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc}\rho(a) \left[\mu_{ab}\mu_{bc}\mu_{ca}\right] I_{ba}(t_2) I_{ca} (t_1)
\end{aligned}
$$



12(The product of the first term in the first parentheses and the second term in the second parentheses
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1) \times\left[\mu_{a_1a_3}\delta_{b_1b_3}\right]\left[-\mu_{b_5b_3}\delta_{a_3a_5}\right]\rho(a_5)\delta_{a_5b_5} \\ &
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \rho(a_5)\mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1) \times\left[\mu_{a_1a_3}\mu_{b_5b_3}\right]\left[\delta_{b_1b_3}\delta_{a_3a_5}\delta_{a_5b_5}\right] \\ &
-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{(b_5)a_ib_i}^{i=1,3} \rho(a_3)\mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1) \times\left[\mu_{a_1a_3}\mu_{b_5b_3}\right]\left[\delta_{b_1b_3}\delta_{a_3b_5}\right] \\ &
-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1}^{a_3} \rho(a_3) I_{a_1b_1}(t_2) I_{a_3b_1} (t_1) \times\left[\mu_{b_1a_1}\mu_{a_1a_3}\mu_{a_3b_1}\right] \\ &
\xlongequal[b_1\rightarrow a,a_1\rightarrow b]{a_3\rightarrow c}-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc}\rho(c) I_{ba}(t_2) I_{ca} (t_1) \times\left[\mu_{b_1a_1}\mu_{a_1a_3}\mu_{a_3b_1}\right]
\end{aligned}
$$


21 (The product of the second term in the first parentheses and the first term in the second parentheses
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[-\mu_{b_3b_1}\delta_{a_1a_3}\right]\times\left[\mu_{a_3a_5}\delta_{b_3b_5}\rho(a_5)\delta_{a_5b_5}\right] \\ &
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[\mu_{b_3b_1} \mu_{a_3a_5}\right]\times\left[\delta_{a_1a_3}\delta_{b_3b_5}\delta_{a_5b_5} \right]\\ &
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{(a_5)a_ib_i}^{i=1,3} \rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[\mu_{b_3b_1} \mu_{a_3a_5}\right]\times\left[\delta_{a_1a_3}\delta_{b_3a_5} \right]\\&
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1b_3}\rho(b_3) \left[\mu_{b_1a_1}\mu_{b_3b_1} \mu_{a_1b_3}\right] I_{a_1b_1}(t_2) I_{a_1b_3} (t_1)
\\&
\xlongequal[b_1\rightarrow a,a_1\rightarrow b]{b_3\rightarrow c}-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc}\rho(c) \left[\mu_{ab}\mu_{bc}\mu_{ca} \right]
I_{ba}(t_2) I_{bc} (t_1)
\end{aligned}
$$


22(The product of the second term in the first parentheses and the second term in the second parentheses
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[-\mu_{b_3b_1}\delta_{a_1a_3}\right]\times \left[-\mu_{b_5b_3}\delta_{a_3a_5}\right]\rho(a_5)\delta_{a_5b_5} \\ &
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \rho(a_5) I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[\mu_{b_1a_1}\mu_{b_3b_1}\mu_{b_5b_3}\right]\times\left(\delta_{a_5b_5}\delta_{a_1a_3}\delta_{a_3a_5}\right) \\&
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1b_3b_5} \rho(a_1) I_{a_1b_1}(t_2) I_{a_1b_3} (t_1)
\left[\mu_{b_1a_1}\mu_{b_3b_1}\mu_{b_5b_3}\right]\times\left(\delta_{a_1b_5}\right) \\&
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1b_3} \rho(a_1) I_{a_1b_1}(t_2) I_{a_1b_3} (t_1)
\left[\mu_{b_1a_1}\mu_{b_3b_1}\mu_{a_1b_3}\right] \\&
\xlongequal[a_1\rightarrow a,b_3\rightarrow b]{b_1\rightarrow c}\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc} \rho(a) I_{ac}(t_2) I_{ab} (t_1)
\left[\mu_{ab}\mu_{bc}\mu_{ca}\right]
\end{aligned}
$$



But I found that the equations obtained by Liouville space approach is different from the Hilbert space by directly finding the trace of Eq.(5.24). and my Liouville results are different from Mukamel's results in Eq.(6.18)
$$
\begin{aligned}
& Q_1(t_2,t_1)=\left\langle V(t_1+t_2)V(t_1)V(0)\rho(-\infty)\right\rangle=\sum\limits_{abcd} \left \langle a| V(t_1+t_2)|b \right\rangle
\left\langle b|V(t_1) |c\right\rangle \left\langle c|V(0) |d\right \rangle \left\langle d| \rho(-\infty)| a\right\rangle \\ &
=\sum\limits_{abc} \rho(a) I_{ba}(t_1+t_2) I_{cb} (t_1) \mu_{ab}\mu_{bc}\mu_{ca}
\end{aligned}
$$
Who can give some suggestions and hints, many manty thx!
 
Last edited:
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...