Liouville space and nonlinear optical spectrosopy -- deriving the the second order nonlinear optical signal

  • Context: Graduate 
  • Thread starter Thread starter PRB147
  • Start date Start date
  • Tags Tags
    Hilbert Spectroscopy
Click For Summary
SUMMARY

The discussion focuses on deriving the second-order nonlinear optical signal, \( S^{(2)}(t_2,t_1) \), using both Liouville space and Hilbert space approaches as outlined in Mukamel's "Principles of Nonlinear Optical Spectroscopy." Key equations include Eq. (5.21) and Eq. (5.22) for the Liouville space representation and Eq. (5.24) for the Hilbert space representation. The derivation reveals discrepancies between the results obtained from the two methods, particularly in Eq. (6.18), prompting requests for suggestions and insights from the community.

PREREQUISITES
  • Understanding of Liouville space formalism in quantum mechanics
  • Familiarity with Hilbert space concepts and operators
  • Knowledge of nonlinear optical spectroscopy principles
  • Proficiency in mathematical derivations involving quantum mechanics
NEXT STEPS
  • Study Mukamel's "Principles of Nonlinear Optical Spectroscopy" for deeper insights into nonlinear optical signals
  • Explore advanced topics in Liouville space theory and its applications in quantum optics
  • Investigate the differences between Liouville and Hilbert space approaches in quantum mechanics
  • Review literature on second-order nonlinear optical signals for practical applications and experimental setups
USEFUL FOR

Researchers and students in quantum mechanics, particularly those specializing in nonlinear optics, as well as physicists seeking to understand the mathematical foundations of optical spectroscopy.

PRB147
Messages
122
Reaction score
0
TL;DR
I encountered difficulty in deriving the the second order nonlinear optical signal from the book of Mukamel "Principles of Nonlinear Optical Spectroscopy"; Two different approaches results in different results, please help.
P119, Mukamel's book "Principles of Nonlinear Optical Spectroscopy"
Eq.(5.21) in Liouville space
$$ S^{(2)}(t_2,t_1)=\left(\frac{i}{\hbar}\right)^2 \left\langle \left\langle V\left|\mathscr{G}(t_2)\mathscr{V}\mathscr{G}(t_1)\mathscr{V}\right|\rho(-\infty) \right\rangle\right\rangle $$
in Hilbert space
Eq.(5.22) $$S^{(2)}(t_2,t_1)=\left(\frac{i}{\hbar}\right)^2 \left\langle \left[\left[V(t_2+t_1),V(t_1)\right],V(0)\right]\rho(-\infty)\right\rangle $$
Eq.(5.24) $$Q_1(t_2,t_1)=\left\langle V(t_1+t_2)V(t_1)V(0)\rho(-\infty)\right\rangle; Q_1(t_2,t_1)=-\left\langle V(t_1)V(t_1+t_2)V(0)\rho(-\infty)\right\rangle$$

I derived the Eq (6.18) in Page 150 in Liouville space approach and in Hilbert space:
In Liouville space, The drivation as follows:
$$
\begin{aligned}
~&S^{(2)}(t_2,t_1)=\left(\frac{i}{\hbar}\right)^2 \left\langle \left\langle V\left|\mathscr{G}(t_2)\mathscr{V}\mathscr{G}(t_1)\mathscr{V}\right|\rho(-\infty) \right\rangle\right\rangle \\
&=\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,2\cdots, 5} \left\langle \left\langle V| a_1b_1\right\rangle\right\rangle\rangle\left\langle \left\langle a_1b_1\left|\mathscr{G}(t_2)\right|a_2b_2\right\rangle\right\rangle
\left\langle\left\langle a_2b_2 \left|\mathscr{V}\right|a_3b_3 \right\rangle\right\rangle \left\langle \left\langle a_3b_3 \left|\mathscr{G}(t_1)\right|a_3b_3\right\rangle\right\rangle \\ &
\left\langle \left\langle a_3b_3\left|\mathscr{V}\right|a_5b_5\right\rangle\right\rangle\left\langle \left\langle a_5b_5\left|\rho(-\infty) \right.\right\rangle\right\rangle \\&
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\times\left[\mu_{a_1a_3}\delta_{b_1b_3}-\mu_{b_3b_1}\delta_{a_1a_3}\right]\times\left[\mu_{a_3a_5}\delta_{b_3b_5}-\mu_{b_5b_3}\delta_{a_3a_5}\right]\rho(a_5)\delta_{a_5b_5} \\ &
\end{aligned}
$$


11 (The product of the first term in the first parentheses and the first term in the second parentheses in the above equation)
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\times\left[\mu_{a_1a_3}\delta_{b_1b_3}\right]\times\left[\mu_{a_3a_5}\delta_{b_3b_5}\right]\rho(a_5)\delta_{a_5b_5} \\
& =\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5}\rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\times\left[\mu_{a_1a_3}\mu_{a_3a_5}\right]\left(\delta_{b_1b_3}\delta_{b_3b_5}\delta_{a_5b_5}\right) \\
&= \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1}^{a_3a_5}\rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_1} (t_1)
\times\left[\mu_{a_1a_3}\mu_{a_3a_5}\right]\left(\delta_{b_1a_5}\right) \\
&= \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1}^{a_3}\rho(b_1) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_1} (t_1)
\times\left[\mu_{a_1a_3}\mu_{a_3a_5}\right] \\
&\xlongequal[b_1\rightarrow a,a_1\rightarrow b]{a_3\rightarrow c}\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc}\rho(a) \left[\mu_{ab}\mu_{bc}\mu_{ca}\right] I_{ba}(t_2) I_{ca} (t_1)
\end{aligned}
$$



12(The product of the first term in the first parentheses and the second term in the second parentheses
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1) \times\left[\mu_{a_1a_3}\delta_{b_1b_3}\right]\left[-\mu_{b_5b_3}\delta_{a_3a_5}\right]\rho(a_5)\delta_{a_5b_5} \\ &
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \rho(a_5)\mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1) \times\left[\mu_{a_1a_3}\mu_{b_5b_3}\right]\left[\delta_{b_1b_3}\delta_{a_3a_5}\delta_{a_5b_5}\right] \\ &
-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{(b_5)a_ib_i}^{i=1,3} \rho(a_3)\mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1) \times\left[\mu_{a_1a_3}\mu_{b_5b_3}\right]\left[\delta_{b_1b_3}\delta_{a_3b_5}\right] \\ &
-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1}^{a_3} \rho(a_3) I_{a_1b_1}(t_2) I_{a_3b_1} (t_1) \times\left[\mu_{b_1a_1}\mu_{a_1a_3}\mu_{a_3b_1}\right] \\ &
\xlongequal[b_1\rightarrow a,a_1\rightarrow b]{a_3\rightarrow c}-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc}\rho(c) I_{ba}(t_2) I_{ca} (t_1) \times\left[\mu_{b_1a_1}\mu_{a_1a_3}\mu_{a_3b_1}\right]
\end{aligned}
$$


21 (The product of the second term in the first parentheses and the first term in the second parentheses
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[-\mu_{b_3b_1}\delta_{a_1a_3}\right]\times\left[\mu_{a_3a_5}\delta_{b_3b_5}\rho(a_5)\delta_{a_5b_5}\right] \\ &
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[\mu_{b_3b_1} \mu_{a_3a_5}\right]\times\left[\delta_{a_1a_3}\delta_{b_3b_5}\delta_{a_5b_5} \right]\\ &
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{(a_5)a_ib_i}^{i=1,3} \rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[\mu_{b_3b_1} \mu_{a_3a_5}\right]\times\left[\delta_{a_1a_3}\delta_{b_3a_5} \right]\\&
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1b_3}\rho(b_3) \left[\mu_{b_1a_1}\mu_{b_3b_1} \mu_{a_1b_3}\right] I_{a_1b_1}(t_2) I_{a_1b_3} (t_1)
\\&
\xlongequal[b_1\rightarrow a,a_1\rightarrow b]{b_3\rightarrow c}-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc}\rho(c) \left[\mu_{ab}\mu_{bc}\mu_{ca} \right]
I_{ba}(t_2) I_{bc} (t_1)
\end{aligned}
$$


22(The product of the second term in the first parentheses and the second term in the second parentheses
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[-\mu_{b_3b_1}\delta_{a_1a_3}\right]\times \left[-\mu_{b_5b_3}\delta_{a_3a_5}\right]\rho(a_5)\delta_{a_5b_5} \\ &
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \rho(a_5) I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[\mu_{b_1a_1}\mu_{b_3b_1}\mu_{b_5b_3}\right]\times\left(\delta_{a_5b_5}\delta_{a_1a_3}\delta_{a_3a_5}\right) \\&
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1b_3b_5} \rho(a_1) I_{a_1b_1}(t_2) I_{a_1b_3} (t_1)
\left[\mu_{b_1a_1}\mu_{b_3b_1}\mu_{b_5b_3}\right]\times\left(\delta_{a_1b_5}\right) \\&
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1b_3} \rho(a_1) I_{a_1b_1}(t_2) I_{a_1b_3} (t_1)
\left[\mu_{b_1a_1}\mu_{b_3b_1}\mu_{a_1b_3}\right] \\&
\xlongequal[a_1\rightarrow a,b_3\rightarrow b]{b_1\rightarrow c}\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc} \rho(a) I_{ac}(t_2) I_{ab} (t_1)
\left[\mu_{ab}\mu_{bc}\mu_{ca}\right]
\end{aligned}
$$



But I found that the equations obtained by Liouville space approach is different from the Hilbert space by directly finding the trace of Eq.(5.24). and my Liouville results are different from Mukamel's results in Eq.(6.18)
$$
\begin{aligned}
& Q_1(t_2,t_1)=\left\langle V(t_1+t_2)V(t_1)V(0)\rho(-\infty)\right\rangle=\sum\limits_{abcd} \left \langle a| V(t_1+t_2)|b \right\rangle
\left\langle b|V(t_1) |c\right\rangle \left\langle c|V(0) |d\right \rangle \left\langle d| \rho(-\infty)| a\right\rangle \\ &
=\sum\limits_{abc} \rho(a) I_{ba}(t_1+t_2) I_{cb} (t_1) \mu_{ab}\mu_{bc}\mu_{ca}
\end{aligned}
$$
Who can give some suggestions and hints, many manty thx!
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K