A Liouville space and nonlinear optical spectrosopy -- deriving the the second order nonlinear optical signal

PRB147
Messages
122
Reaction score
0
TL;DR Summary
I encountered difficulty in deriving the the second order nonlinear optical signal from the book of Mukamel "Principles of Nonlinear Optical Spectroscopy"; Two different approaches results in different results, please help.
P119, Mukamel's book "Principles of Nonlinear Optical Spectroscopy"
Eq.(5.21) in Liouville space
$$ S^{(2)}(t_2,t_1)=\left(\frac{i}{\hbar}\right)^2 \left\langle \left\langle V\left|\mathscr{G}(t_2)\mathscr{V}\mathscr{G}(t_1)\mathscr{V}\right|\rho(-\infty) \right\rangle\right\rangle $$
in Hilbert space
Eq.(5.22) $$S^{(2)}(t_2,t_1)=\left(\frac{i}{\hbar}\right)^2 \left\langle \left[\left[V(t_2+t_1),V(t_1)\right],V(0)\right]\rho(-\infty)\right\rangle $$
Eq.(5.24) $$Q_1(t_2,t_1)=\left\langle V(t_1+t_2)V(t_1)V(0)\rho(-\infty)\right\rangle; Q_1(t_2,t_1)=-\left\langle V(t_1)V(t_1+t_2)V(0)\rho(-\infty)\right\rangle$$

I derived the Eq (6.18) in Page 150 in Liouville space approach and in Hilbert space:
In Liouville space, The drivation as follows:
$$
\begin{aligned}
~&S^{(2)}(t_2,t_1)=\left(\frac{i}{\hbar}\right)^2 \left\langle \left\langle V\left|\mathscr{G}(t_2)\mathscr{V}\mathscr{G}(t_1)\mathscr{V}\right|\rho(-\infty) \right\rangle\right\rangle \\
&=\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,2\cdots, 5} \left\langle \left\langle V| a_1b_1\right\rangle\right\rangle\rangle\left\langle \left\langle a_1b_1\left|\mathscr{G}(t_2)\right|a_2b_2\right\rangle\right\rangle
\left\langle\left\langle a_2b_2 \left|\mathscr{V}\right|a_3b_3 \right\rangle\right\rangle \left\langle \left\langle a_3b_3 \left|\mathscr{G}(t_1)\right|a_3b_3\right\rangle\right\rangle \\ &
\left\langle \left\langle a_3b_3\left|\mathscr{V}\right|a_5b_5\right\rangle\right\rangle\left\langle \left\langle a_5b_5\left|\rho(-\infty) \right.\right\rangle\right\rangle \\&
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\times\left[\mu_{a_1a_3}\delta_{b_1b_3}-\mu_{b_3b_1}\delta_{a_1a_3}\right]\times\left[\mu_{a_3a_5}\delta_{b_3b_5}-\mu_{b_5b_3}\delta_{a_3a_5}\right]\rho(a_5)\delta_{a_5b_5} \\ &
\end{aligned}
$$


11 (The product of the first term in the first parentheses and the first term in the second parentheses in the above equation)
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\times\left[\mu_{a_1a_3}\delta_{b_1b_3}\right]\times\left[\mu_{a_3a_5}\delta_{b_3b_5}\right]\rho(a_5)\delta_{a_5b_5} \\
& =\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5}\rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\times\left[\mu_{a_1a_3}\mu_{a_3a_5}\right]\left(\delta_{b_1b_3}\delta_{b_3b_5}\delta_{a_5b_5}\right) \\
&= \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1}^{a_3a_5}\rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_1} (t_1)
\times\left[\mu_{a_1a_3}\mu_{a_3a_5}\right]\left(\delta_{b_1a_5}\right) \\
&= \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1}^{a_3}\rho(b_1) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_1} (t_1)
\times\left[\mu_{a_1a_3}\mu_{a_3a_5}\right] \\
&\xlongequal[b_1\rightarrow a,a_1\rightarrow b]{a_3\rightarrow c}\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc}\rho(a) \left[\mu_{ab}\mu_{bc}\mu_{ca}\right] I_{ba}(t_2) I_{ca} (t_1)
\end{aligned}
$$



12(The product of the first term in the first parentheses and the second term in the second parentheses
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1) \times\left[\mu_{a_1a_3}\delta_{b_1b_3}\right]\left[-\mu_{b_5b_3}\delta_{a_3a_5}\right]\rho(a_5)\delta_{a_5b_5} \\ &
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \rho(a_5)\mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1) \times\left[\mu_{a_1a_3}\mu_{b_5b_3}\right]\left[\delta_{b_1b_3}\delta_{a_3a_5}\delta_{a_5b_5}\right] \\ &
-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{(b_5)a_ib_i}^{i=1,3} \rho(a_3)\mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1) \times\left[\mu_{a_1a_3}\mu_{b_5b_3}\right]\left[\delta_{b_1b_3}\delta_{a_3b_5}\right] \\ &
-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1}^{a_3} \rho(a_3) I_{a_1b_1}(t_2) I_{a_3b_1} (t_1) \times\left[\mu_{b_1a_1}\mu_{a_1a_3}\mu_{a_3b_1}\right] \\ &
\xlongequal[b_1\rightarrow a,a_1\rightarrow b]{a_3\rightarrow c}-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc}\rho(c) I_{ba}(t_2) I_{ca} (t_1) \times\left[\mu_{b_1a_1}\mu_{a_1a_3}\mu_{a_3b_1}\right]
\end{aligned}
$$


21 (The product of the second term in the first parentheses and the first term in the second parentheses
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[-\mu_{b_3b_1}\delta_{a_1a_3}\right]\times\left[\mu_{a_3a_5}\delta_{b_3b_5}\rho(a_5)\delta_{a_5b_5}\right] \\ &
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[\mu_{b_3b_1} \mu_{a_3a_5}\right]\times\left[\delta_{a_1a_3}\delta_{b_3b_5}\delta_{a_5b_5} \right]\\ &
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{(a_5)a_ib_i}^{i=1,3} \rho(a_5) \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[\mu_{b_3b_1} \mu_{a_3a_5}\right]\times\left[\delta_{a_1a_3}\delta_{b_3a_5} \right]\\&
=-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1b_3}\rho(b_3) \left[\mu_{b_1a_1}\mu_{b_3b_1} \mu_{a_1b_3}\right] I_{a_1b_1}(t_2) I_{a_1b_3} (t_1)
\\&
\xlongequal[b_1\rightarrow a,a_1\rightarrow b]{b_3\rightarrow c}-\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc}\rho(c) \left[\mu_{ab}\mu_{bc}\mu_{ca} \right]
I_{ba}(t_2) I_{bc} (t_1)
\end{aligned}
$$


22(The product of the second term in the first parentheses and the second term in the second parentheses
$$
\begin{aligned}
~& \theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \mu_{b_1a_1} I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[-\mu_{b_3b_1}\delta_{a_1a_3}\right]\times \left[-\mu_{b_5b_3}\delta_{a_3a_5}\right]\rho(a_5)\delta_{a_5b_5} \\ &
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_ib_i}^{i=1,3,5} \rho(a_5) I_{a_1b_1}(t_2) I_{a_3b_3} (t_1)
\left[\mu_{b_1a_1}\mu_{b_3b_1}\mu_{b_5b_3}\right]\times\left(\delta_{a_5b_5}\delta_{a_1a_3}\delta_{a_3a_5}\right) \\&
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1b_3b_5} \rho(a_1) I_{a_1b_1}(t_2) I_{a_1b_3} (t_1)
\left[\mu_{b_1a_1}\mu_{b_3b_1}\mu_{b_5b_3}\right]\times\left(\delta_{a_1b_5}\right) \\&
=\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{a_1b_1b_3} \rho(a_1) I_{a_1b_1}(t_2) I_{a_1b_3} (t_1)
\left[\mu_{b_1a_1}\mu_{b_3b_1}\mu_{a_1b_3}\right] \\&
\xlongequal[a_1\rightarrow a,b_3\rightarrow b]{b_1\rightarrow c}\theta(t_2)\theta(t_1)\left(\frac{i}{\hbar}\right)^2\sum\limits_{abc} \rho(a) I_{ac}(t_2) I_{ab} (t_1)
\left[\mu_{ab}\mu_{bc}\mu_{ca}\right]
\end{aligned}
$$



But I found that the equations obtained by Liouville space approach is different from the Hilbert space by directly finding the trace of Eq.(5.24). and my Liouville results are different from Mukamel's results in Eq.(6.18)
$$
\begin{aligned}
& Q_1(t_2,t_1)=\left\langle V(t_1+t_2)V(t_1)V(0)\rho(-\infty)\right\rangle=\sum\limits_{abcd} \left \langle a| V(t_1+t_2)|b \right\rangle
\left\langle b|V(t_1) |c\right\rangle \left\langle c|V(0) |d\right \rangle \left\langle d| \rho(-\infty)| a\right\rangle \\ &
=\sum\limits_{abc} \rho(a) I_{ba}(t_1+t_2) I_{cb} (t_1) \mu_{ab}\mu_{bc}\mu_{ca}
\end{aligned}
$$
Who can give some suggestions and hints, many manty thx!
 
Last edited:
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top