Liquefying Gas: Temperature & Compression

  • Context: Undergrad 
  • Thread starter Thread starter tomtraxler
  • Start date Start date
  • Tags Tags
    Gas
Click For Summary
SUMMARY

The discussion centers on the liquefaction of gases, specifically addressing how gases like oxygen can be liquefied through compression and cooling. Participants clarify that liquefaction is not achieved through adiabatic compression alone; instead, it requires a combination of compression and external cooling, as exemplified by the ideal gas law (PV=nRT) and van der Waals forces. The consensus is that while compression raises temperature, effective liquefaction necessitates cooling to overcome kinetic energy and allow intermolecular forces to dominate.

PREREQUISITES
  • Understanding of the ideal gas law (PV=nRT)
  • Knowledge of van der Waals forces and intermolecular interactions
  • Familiarity with thermodynamic processes, particularly adiabatic and isothermal processes
  • Basic principles of cryogenics and gas liquefaction techniques
NEXT STEPS
  • Research the principles of cryogenic technology for gas liquefaction
  • Study the role of van der Waals forces in phase transitions
  • Explore the differences between adiabatic and isothermal compression processes
  • Investigate specific liquefaction methods for gases like butane and propane
USEFUL FOR

Students and professionals in chemistry, physics, and engineering, particularly those focused on thermodynamics, gas liquefaction processes, and cryogenic applications.

tomtraxler
Messages
10
Reaction score
0
Everyone was great about answering my question relating temperature and compression of a gas. Here is ultimately the question I was trying to figure out:

If a gas is compressed and work is done on the gas to compress it either by piston, centrifuge, or whatever, I understand that the work of compression adds to the kinetic energy of the gas molecules and increases the temperature.

I may be wrong in this assumption, but I understand that a gas, such as oxygen, can be liquefied by pressure. If compressing a gas raises its temperature (average kinetic energy), how does it liquefy?

I can imagine two answers: (1) with compression and squeezing of the gas molecules closer together, the intermolecular forces of attraction overcome the kinetic energy, despite the increase in kinetic energy, or (2) my assumption is wrong and that compression must be accompanied by a lowering of temperature or kinetic energy, in which case the forces of attraction still prevail.

Or a third alternatuive is that I am flat wrong for some other reason.

Any help?
 
Science news on Phys.org
tomtraxler said:
Everyone was great about answering my question relating temperature and compression of a gas. Here is ultimately the question I was trying to figure out:

If a gas is compressed and work is done on the gas to compress it either by piston, centrifuge, or whatever, I understand that the work of compression adds to the kinetic energy of the gas molecules and increases the temperature.

I may be wrong in this assumption, but I understand that a gas, such as oxygen, can be liquefied by pressure. If compressing a gas raises its temperature (average kinetic energy), how does it liquefy?

I can imagine two answers: (1) with compression and squeezing of the gas molecules closer together, the intermolecular forces of attraction overcome the kinetic energy, despite the increase in kinetic energy, or (2) my assumption is wrong and that compression must be accompanied by a lowering of temperature or kinetic energy, in which case the forces of attraction still prevail.

Or a third alternatuive is that I am flat wrong for some other reason.

Any help?


You're making the assumption of a purely adiabatic compression, which is never done in liquification of gasses. There's nothing to prevent the process of liquification by a combination of compression and cooling by an external source (heat sink/reservoir). A heat engine has that in one part of its cycle.

Zz.
 
tomtraxler said:
I may be wrong in this assumption, but I understand that a gas, such as oxygen, can be liquefied by pressure. If compressing a gas raises its temperature (average kinetic energy), how does it liquefy?

I can imagine two answers: (1) with compression and squeezing of the gas molecules closer together, the intermolecular forces of attraction overcome the kinetic energy, despite the increase in kinetic energy, or (2) my assumption is wrong and that compression must be accompanied by a lowering of temperature or kinetic energy, in which case the forces of attraction still prevail.

Yes, it's (2). Keep in mind that the ideal gas law, PV=nRT, is about ideal gases. Ideal means the molecules making up the gas have zero volume and no intermolecular forces (ie- completely elastic collisions) That works well enough as an approximation in most cases, especially when dealing with low densities and high temperatures.

In reality, things are much more complicated than the ideal condition, as is amply demonstrated by liquification, when the gas goes through changes in state. Liquification takes place because of van der Waals forces between the molecules, and this depends on the specific electron configuration of the molecules.

As far as I know, in practice liquification is always done by actively cooling the gas as it's compressed. After all, why bother to inhibit cooling? It'd be far too expensive to to reach the necessary pressures for liquification at high temperatures, if it's even possible. Consider the center of the sun, where pressures ar extremely high. Liquification doesn't happen (though the material there isn't even a gas, it's a plasma).

In many cases, liquification is possible with cooling even without compression. Just go outside in the morning and look and the dew.
 
thanks for the answers.

so when natural gas is liquified, it is normally liquified by compression and cooling or only cooling?
 
tomtraxler said:
so when natural gas is liquified, it is normally liquified by compression and cooling or only cooling?

A fairly quick google search indicates that natural gas is liquified mostly through extreme cooling, but it looks like some pressuration is used at least by some manufacturers. It's probably cheaper that way. But it seems the main technology is cryogenic.

Some gasses can be liquified strictly by pressurization at ambient temperatures, such as butane and propane.

This isn't my field, so I'm just reporting what I saw on a few websites.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
6K