jostpuur
- 2,112
- 19
If a particle is point like, then point x\in\mathbb{R}^3 specifies the particle's spatial configuration, and the quantum mechanical wave function for the particle is
<br /> \Psi:\mathbb{R}^3\to\mathbb{C}<br />
The spatial configuration of a closed string with fixed length L can be specified with a function
<br /> f:S^1\to\mathbb{R}^3<br />
such that the function satisfies
<br /> \underset{S^1}{\int} du\;|\nabla f(u)| = L<br />
Is the idea in string theory to then describe these strings with wave mappings
<br /> \Psi:\{f\}\to\mathbb{C}?<br />
<br /> \Psi:\mathbb{R}^3\to\mathbb{C}<br />
The spatial configuration of a closed string with fixed length L can be specified with a function
<br /> f:S^1\to\mathbb{R}^3<br />
such that the function satisfies
<br /> \underset{S^1}{\int} du\;|\nabla f(u)| = L<br />
Is the idea in string theory to then describe these strings with wave mappings
<br /> \Psi:\{f\}\to\mathbb{C}?<br />