Load bearing capacity of a tall column

AI Thread Summary
The load-bearing capacity of an 8" x 8" x 10-foot tall white oak column can be estimated using Euler's Formula for buckling, which requires the modulus of elasticity and moment of inertia for the material. It is crucial to ensure that the load is applied at the centroid and that all units are consistent for accurate calculations. A design factor of safety is typically applied, and the actual load should ideally be less than half of the critical load to ensure safety. The applicability of Euler's formula depends on the slenderness ratio and end support conditions, as uneven support can lead to failure. For precise calculations and safety, consulting a Structural Engineer is recommended, as various factors can significantly influence allowable stress in wood.
Barnsaver
Messages
1
Reaction score
0
Could someone please tell me the load bearing capacity of an 8" x 8" x 10 foot tall white oak column. The oak is fully cured and would be placed on an appropriately sized concrete footing. It would be mechanically fastened to a beam that it would be supporting.
Any assistance or explanation with the calculation would be sincerely appreciated. Thank you.
 
Engineering news on Phys.org
If we consider the base as "fixed", and the opposite end as "free" end condition. Then the critical load from Euler's Formula:

$$ P_{cr} = \frac{ \pi^2 E I}{L_e^2} $$

Where

## P_{cr} ## is the critical load for the onset of buckling
## E ## is the Modulus of Elasticity for your material ( oak - white oak - if you can find it )
## I ## is the moment of inertial about the centroid of your 8 in square column ##= \frac{1}{12} b^4 ##
## L_e ## is the effective length of the column for the given end condition ## = 2 L ##
## L ## is the height of the column

Make sure you convert all your units so they are consistent.

This model assumes the load is not eccentric ( i.e it can be effectively applied at the centroid of the column cross section )

Also, in practice there is most likely a Design Factor of Safety applied (depending on the application and material type)

You're probably ok if the actual load is less than half of the critical load, but I wouldn't say for sure.

You should consult a Structural Engineer for more accurate information on column design and applicable code, or if this thing collapses (because the actual loading situation was not accounted for) people could be seriously injured.
 
Last edited:
  • Like
Likes russ_watters and Lnewqban
Before using the Euler formula, it is necessary to calculate the slenderness ratio to find if the Euler column buckling formula is applicable. The end support conditions are critical - uneven support can cause big problems.

If the Euler formula does not apply, it is a simple compressive stress problem. But even a simple compressive stress problem is critically dependent on a correct value for allowable stress. Allowable stress for wood varies widely depending on grain direction, defects, knots, moisture content, and other variables.

A complete and correct answer would require more information and a deeper engineering analysis, and is beyond what PF does. Therefore, and for liability reasons, this thread is closed.
 
  • Like
Likes russ_watters and erobz
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top