Load bearing capacity of a tall column

AI Thread Summary
The load-bearing capacity of an 8" x 8" x 10-foot tall white oak column can be estimated using Euler's Formula for buckling, which requires the modulus of elasticity and moment of inertia for the material. It is crucial to ensure that the load is applied at the centroid and that all units are consistent for accurate calculations. A design factor of safety is typically applied, and the actual load should ideally be less than half of the critical load to ensure safety. The applicability of Euler's formula depends on the slenderness ratio and end support conditions, as uneven support can lead to failure. For precise calculations and safety, consulting a Structural Engineer is recommended, as various factors can significantly influence allowable stress in wood.
Barnsaver
Messages
1
Reaction score
0
Could someone please tell me the load bearing capacity of an 8" x 8" x 10 foot tall white oak column. The oak is fully cured and would be placed on an appropriately sized concrete footing. It would be mechanically fastened to a beam that it would be supporting.
Any assistance or explanation with the calculation would be sincerely appreciated. Thank you.
 
Engineering news on Phys.org
If we consider the base as "fixed", and the opposite end as "free" end condition. Then the critical load from Euler's Formula:

$$ P_{cr} = \frac{ \pi^2 E I}{L_e^2} $$

Where

## P_{cr} ## is the critical load for the onset of buckling
## E ## is the Modulus of Elasticity for your material ( oak - white oak - if you can find it )
## I ## is the moment of inertial about the centroid of your 8 in square column ##= \frac{1}{12} b^4 ##
## L_e ## is the effective length of the column for the given end condition ## = 2 L ##
## L ## is the height of the column

Make sure you convert all your units so they are consistent.

This model assumes the load is not eccentric ( i.e it can be effectively applied at the centroid of the column cross section )

Also, in practice there is most likely a Design Factor of Safety applied (depending on the application and material type)

You're probably ok if the actual load is less than half of the critical load, but I wouldn't say for sure.

You should consult a Structural Engineer for more accurate information on column design and applicable code, or if this thing collapses (because the actual loading situation was not accounted for) people could be seriously injured.
 
Last edited:
  • Like
Likes russ_watters and Lnewqban
Before using the Euler formula, it is necessary to calculate the slenderness ratio to find if the Euler column buckling formula is applicable. The end support conditions are critical - uneven support can cause big problems.

If the Euler formula does not apply, it is a simple compressive stress problem. But even a simple compressive stress problem is critically dependent on a correct value for allowable stress. Allowable stress for wood varies widely depending on grain direction, defects, knots, moisture content, and other variables.

A complete and correct answer would require more information and a deeper engineering analysis, and is beyond what PF does. Therefore, and for liability reasons, this thread is closed.
 
  • Like
Likes russ_watters and erobz
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top