Locally inertial coordinates on geodesics

VantagePoint72
Messages
820
Reaction score
34
It's a standard fact of GR that at a given point in space-time, we can construct a coordinate system such that the metric tensor takes the form of Minkowski spacetime and its first derivatives vanish. Equivalently, we can make the Christoffel symbols vanish at point. Moreover, the fact that, in general, there's no coordinate system that let's us do this simultaneously for the entire manifold is the essence of curvature.

But, is it possible to construct a coordinate system such that the metric is Minkowskian along an entire geodesic? Since geodesics are the generalization in GR of inertial motion, it seems intuitively that it should be possible to do so. According to the equivalence principle, an arbitrarily small 'laboratory' falling along a geodesic should be unable to determine if its in an inertial (in the SR sense) frame in flat spacetime or falling along a geodesic in curved spacetime. It seems to me that finding a coordinate system in which the Christoffel symbols along the geodesic vanish would be mathematical realization of this.
 
Physics news on Phys.org
http://relativity.livingreviews.org/Articles/lrr-2011-7/fulltext.html

Try the section Fermi normal coordinates, and see the remarks after Eq 9.16.
 
Last edited by a moderator:
It sounds like you're describing Fermi coordinates. Fermi originally did this for a Riemannian manifold, but it was later generalized to pseudo-Riemannian manifolds.
 
Perfect, thank you!
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Replies
57
Views
4K
Replies
1
Views
805
Replies
78
Views
7K
Replies
8
Views
2K
Replies
14
Views
1K
Replies
4
Views
4K
Back
Top