Locating Points in 3D Space Based on Given Parameters

  • Thread starter Thread starter joinforfun89
  • Start date Start date
  • Tags Tags
    3d Point
AI Thread Summary
The discussion focuses on locating four points A, B, C, and D in 3D Cartesian coordinates based on specified parameters, including distances and angles. The user seeks to program a simulation for attaching atoms, requiring assistance with the mathematical formulation for these spatial relationships. Clarifications are made regarding the definition of angles between points and rays, particularly the angles between rays AB and AC, and the torsion angle A-B-C-D. The conversation highlights the importance of establishing a coordinate system and suggests using vector mathematics, such as the dot product, to calculate distances and angles. Overall, the thread emphasizes the need for a general solution to model the spatial arrangement of these points accurately.
joinforfun89
Messages
4
Reaction score
0
Hi,

Let's think about 4 points A,B,C,D.
I need to locate the points in 3D Cartesian coordinates provided the following parameters are given about the point:
1] Distance between A and B.
2] Distance between B and C
3] The angle between A B and C.
4] The angle between B C and D.
5] The torsion angle A-B-C-D.

I want to program this up so that in my simulation I can attach atoms to each other provided the bond-lengths, bond angles and torsion angles are specified. I need help with the math. We know that we must start by setting up the coordinate system. So for the first set of 4 atoms, we can place A at the origin, B along any of the coordinate axes and finally C in a chosen plane. But once we are through with the first set, what is a general formulation for the solution of the problem ?

Please let me know if you know of any books/articles which deal with similar issues.

Thanks for your help.
 
Mathematics news on Phys.org
joinforfun89 said:
Hi,

Let's think about 4 points A,B,C,D.
I need to locate the points in 3D Cartesian coordinates provided the following parameters are given about the point:
1] Distance between A and B.
2] Distance between B and C

3] The angle between A B and C.
4] The angle between B C and D.
5] The torsion angle A-B-C-D.
I don't understand what you mean by these. Three points, A, B, and C, don't have a single angle. Assuming you meant the ray, AB, there still is no one angle between a line or ray and a point. Did you mean the angle between rays AB and AC? By "the torsion angle A-B-C-D" I think you mean "the angle around line AB that maps line AC onto AB" but I'm not sure of that.

I want to program this up so that in my simulation I can attach atoms to each other provided the bond-lengths, bond angles and torsion angles are specified. I need help with the math. We know that we must start by setting up the coordinate system. So for the first set of 4 atoms, we can place A at the origin, B along any of the coordinate axes and finally C in a chosen plane. But once we are through with the first set, what is a general formulation for the solution of the problem ?

Please let me know if you know of any books/articles which deal with similar issues.

Thanks for your help.
 
HallsofIvy said:
I don't understand what you mean by these. Three points, A, B, and C, don't have a single angle. Assuming you meant the ray, AB, there still is no one angle between a line or ray and a point. Did you mean the angle between rays AB and AC? By "the torsion angle A-B-C-D" I think you mean "the angle around line AB that maps line AC onto AB" but I'm not sure of that.

Yes I mean the ray AB and AC and the smaller angle that is made. The torsion angle can be thought of as the angle around line BC that maps line AB on to CD. In other words, the angle between the planes defined by points A,B,C and the plane defined by points B,C and D.


Thanks.
 
Distances between two points A and B can be found by taking the vector A - B and finding its length.

The smallest angle between two vectors can be found using using the dot product. Wiki it. It's a pretty straightforward formula.
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top