- #1

- 1

- 0

Code:

`[tex] u(x) \frac{\partial u(x)}{\partial x} = \frac{1}{2} \frac{\partial u(x)^2}{\partial x} [/tex]`

See, for example (between equations 4 and 5): http://fluid.itcmp.pwr.wroc.pl/~znmp/dydaktyka/fundam_FM/Lecture9_10.pdf

Thanks!

- I
- Thread starter nonLinEul
- Start date

- #1

- 1

- 0

Code:

`[tex] u(x) \frac{\partial u(x)}{\partial x} = \frac{1}{2} \frac{\partial u(x)^2}{\partial x} [/tex]`

See, for example (between equations 4 and 5): http://fluid.itcmp.pwr.wroc.pl/~znmp/dydaktyka/fundam_FM/Lecture9_10.pdf

Thanks!

- #2

- 16,829

- 6,651

Did you ever encounter the product rule for derivatives? Or the chain rule? Both work.

- #3

- 6

- 0

<=> d/dx[u

- Last Post

- Replies
- 3

- Views
- 30K

- Last Post

- Replies
- 13

- Views
- 7K

- Last Post

- Replies
- 6

- Views
- 1K

- Last Post

- Replies
- 12

- Views
- 99K

- Last Post

- Replies
- 2

- Views
- 2K

- Last Post

- Replies
- 2

- Views
- 1K

- Last Post

- Replies
- 5

- Views
- 2K

- Last Post

- Replies
- 3

- Views
- 9K

- Last Post

- Replies
- 2

- Views
- 2K

- Last Post

- Replies
- 4

- Views
- 895